The Centre at La Quinta Draft EIR

April 1997
Table of Contents*

3.0 Project Description
4.0 Environmental Setting
5.1 Potential Secondary Land use Effects
5.2 Geotechnical Considerations
5.3 Hydrology and Water Quality
5.4 Biological Resources
5.5 Transportation and Circulation
5.6 Air Quality
5.7 Noise
5.8 Water Distribution and Storage
5.9 Solid Waste Disposal
5.10 Public Services
5.11 Aesthetics
5.12 Cultural Resources
6.0 Impacts Found To Be Not Significant
7.0 Alternatives

*Table of Contents prepared by COLQ Staff for purposes of Archiving (6/2010)
3.0 PROJECT DESCRIPTION

PURPOSE

This section is intended to provide a complete description of the proposed project's objectives, land uses, major infrastructure requirements, phasing and grading concepts and any other relevant aspects of the proposal that will help determine the environmental effects that could result from approval of the project.

INTRODUCTION

Stamko Development is proposing to develop an auto sales/services mall and to establish a specific plan to permit and control development of this auto/sales services mall and a future mixed-use shopping center, on 87 acres of land south of State Highway 111, between Adams Street and Dune Palms Road, in northern La Quinta. This proposal is identified as “The Centre at La Quinta” in this EIR.

PROJECT LOCATION

Regional Location

The City of La Quinta encompasses approximately 31 square miles of land area located in the southwestern portion of the Coachella Valley, in eastern Riverside County. This valley occurs between the San Bernardino Mountains and the Santa Rosa Mountains (see Figure 2). La Quinta is located approximately 18 miles southeast of the resort community of Palm Springs. It is surrounded by the Cities of Indian Wells and Palm Desert to the northwest, Indio, Coachella, the Augustine Indian Reservation and Thermal to the east, and the Santa Rosa Mountains to the south and west. The Interstate 10 Freeway (I-10) provides regional east-west access to the Coachella Valley communities. Washington Street provides vehicular access from I-10 south to State Highway 111, which leads to the project site.

Project Site Location

The 87 acre project site is located immediately south of State Highway 111 and immediately east of Adams Street, in the northern part of La Quinta (see Figure 3). Dune Palms Road lies approximately 300 feet east of the eastern site boundary and Avenue 48 lies approximately 1,850 feet south of the southern site boundary.
FIGURE 2
Regional Location
FIGURE 3
Project Location
APPLICANT

Stamko Development
c/o Collett and Levy
10100 Santa Monica Boulevard, Suite 400
Los Angeles, California 90067
Attn.: Christine F. Clarke

PROJECT OBJECTIVES

Applicant

Stamko Development is seeking a fair return on their investment in this property by improving its value through development of auto sales and service uses on a portion of the site and by securing City approvals of land use and development concepts for future development of the balance of the site.

City of La Quinta

The La Quinta General Plan designates the project site for Mixed/Regional Commercial land uses. As defined by the General Plan, this land use category is intended primarily for retail businesses serving a regional trade area, such as tenants associated with a regional mall, off-price retail outlet, and/or “power center.” Other businesses of a secondary priority include overnight commercial lodging, automobile retail and major office uses. With respect to this project, the City is interested in the development of retail uses which generate sales tax revenue that can be used to help fund various city services, and to achieve a high level of quality in the design and operation of this project, to minimize environmental impacts while providing a convenient and pleasant shopping experience.

PROJECT CHARACTERISTICS

Specific Plan

Specific Plans are a special planning tool that allows a local government to recognize the unique characteristics of a particular planning area and to establish customized land use regulations that will achieve the objectives of the General Plan for that area. Pursuant to Land Use Element policy 2-3.1.9 of the La Quinta General Plan, submittal of a specific plan is required prior to approval of any land use proposal for properties such as this one that are designated for Mixed/Regional Commercial land uses.
Section 65451 of the Government Code sets forth the minimum required contents of a specific plan, as follows:

“A Specific Plan shall include a text and diagram or diagrams which specify all of the following in detail:

1. The distribution, location, and extent of the uses of land, including open space, within the area covered by the plan;

2. The proposed distribution, location and extent and intensity of major components of public and private transportation, sewage, water, drainage, solid waste disposal, energy, and other essential facilities proposed to be located within the area covered by the plan and needed to support the land uses described by the plan;

3. Standards and criteria by which development will proceed, and standards for the conservation, development, and utilization of natural resources, where applicable; and

4. A program of implementation measures including regulations, programs, public works projects, and financing measures necessary to carry out paragraphs 1, 2 and 3.”

The proposed project includes a specific plan which addresses these requirements, including a statement of the relationship of the specific plan to the General Plan (see Appendix A). This plan establishes specific performance, design and development standards to guide the development of the subject property in a manner that is intended to implement the City’s General Plan, and also to provide flexibility to respond to changing conditions which may be a factor in any development program. The proposed specific plan also acts to augment the City’s Zoning Ordinance by providing design guidelines, a tailored list of allowable, conditionally allowable and prohibited uses for the site, and, in some cases, unique development standards.

Land Use and Development Plan

The entire property is within the City’s CR (Regional Commercial) zoning district, which permits a wide variety of retail, service, office, dining, lodging, public, institutional and specialty commercial uses, as well as attached housing as part of a mixed use project. This project, however, is proposed as a multi-phase development designed around two main activities: an auto sales/services mall on the western half of the site, and a large-scale retail/commercial complex on the eastern half. No residential development will be allowed as part of this proposal. Approximately 275,000 square feet of facilities are proposed for
the auto sales/service mall, and approximately 400,000 square feet of leasable space is proposed for the retail/commercial complex. A 150' X 150' area is also proposed to be dedicated to the Coachella Valley Water District (CVWD), for a future well site in the southwestern corner of the project limits. This area would be separated from the rest of the site by a block wall and access would be restricted to CVWD employees only. Figure 4 illustrates the proposed master site plan concept.

Auto Sales/Services Mall

Up to nine individual auto sales dealerships are anticipated within the auto sales/services mall, although other auto-related uses such as auto repair shops, auto parts sales, a car wash, a car rental agency, etc., may be permitted on two of the proposed lot/pad areas in the southwestern part of the property (Lots 7 and 8 as shown on Figure 4). Each dealership site would consist of a showroom office building, outdoor vehicle display and storage lots, a parts department and semi-enclosed repair bays. Repair bays would be devoted to regular maintenance and tune-ups, major and minor engine, transmission and body repairs, diagnosis and repair of electrical systems, and installation of sound systems and communications devices such as cellular phones. Proposed site plans for the first five dealership sites to be developed in Phase 1 are also shown on Figure 4. A summary of proposed lot sizes and anticipated building areas for the development areas included in the auto sales/services mall is presented in Table 2.

<table>
<thead>
<tr>
<th>Parcel No.</th>
<th>Lot Size (acres)</th>
<th>Showroom/Offices (sq. ft.)</th>
<th>Parts (sq. ft.)</th>
<th>Service (sq. ft.)</th>
<th>Total Building Area (sq. ft.)</th>
<th>Estimated Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel 1</td>
<td>4.01</td>
<td>7,000</td>
<td>6,000</td>
<td>27,000</td>
<td>40,000</td>
<td>80</td>
</tr>
<tr>
<td>Parcel 2</td>
<td>3.08</td>
<td>7,000</td>
<td>4,000</td>
<td>11,400</td>
<td>22,400</td>
<td>50</td>
</tr>
<tr>
<td>Parcel 3</td>
<td>4.00</td>
<td>8,000</td>
<td>4,000</td>
<td>15,600</td>
<td>27,600</td>
<td>80</td>
</tr>
<tr>
<td>Parcel 4</td>
<td>4.27</td>
<td>10,000</td>
<td>6,000</td>
<td>14,000</td>
<td>30,000</td>
<td>60</td>
</tr>
<tr>
<td>Parcel 5</td>
<td>5.01</td>
<td>8,000</td>
<td>5,000</td>
<td>18,100</td>
<td>31,100</td>
<td>80</td>
</tr>
<tr>
<td>Parcel 6</td>
<td>3.07</td>
<td>8,000</td>
<td>4,000</td>
<td>16,000</td>
<td>28,000</td>
<td>80</td>
</tr>
<tr>
<td>Parcel 7</td>
<td>3.76</td>
<td>8,500</td>
<td>4,800</td>
<td>18,300</td>
<td>31,600</td>
<td>100</td>
</tr>
<tr>
<td>Parcel 8</td>
<td>3.76</td>
<td>8,500</td>
<td>4,800</td>
<td>18,300</td>
<td>31,600</td>
<td>100</td>
</tr>
<tr>
<td>Parcel 9</td>
<td>4.25</td>
<td>8,800</td>
<td>5,600</td>
<td>15,600</td>
<td>30,000</td>
<td>80</td>
</tr>
<tr>
<td>Total Building Area, Parcels 1 - 9</td>
<td>272,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Estimated Personnel</td>
<td>710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 Project Description

FIGURE 4
Master Site/Phasing Plan
The total anticipated building area, rounded to approximately 275,000 square feet, is equal to a floor area ratio (F.A.R.) for the western half of the site of 0.15. To provide greater flexibility for site planning options, an individual site F.A.R. limit of 0.25 is proposed as a part of this project, well below the current General Plan limit of 0.35.

Auto dealerships would be open seven days a week, for sales activities, generally from 9:00 AM to 9:00 PM. On-site repair services and the parts department would be open Monday through Saturday, between 7:30 AM and 5:30 PM. If other types of auto-oriented businesses should be developed, hours of operation would depend upon the type of customer demand involved. For example, a body shop would be expected to be open Monday through Friday or possibly Monday through Saturday, during the typical workday hours. A car rental agency may, however, be open seven days a week, primarily during typical workday hours, but also possibly during early evening hours.

Special Events

A number of “special events” are also expected to occur on a regular basis, as part of the dealers’ efforts to promote themselves and attract customers. It is proposed to limit such events to a maximum of 40 days per year, with no single event lasting longer than 10 days. Searchlights would not be permitted, however, laser displays and other similar lighting techniques may be employed, if approved by the City. In no case would any such special lighting activity be allowed to continue after 9:00 PM. Each special event would be subject to approval by the City’s Community Development Director.

Mixed-Use Regional Commercial Center

A mixed-use, regional commercial center is proposed on the eastern half of the site, covering approximately 43.5 acres (gross area). Under the City’s current General Plan Land Use Element F.A.R. policies, up to 580,000 square feet of leasable commercial floor space could be developed on this much land area. This level of development would likely entail a mid-rise form of development, multi-level parking structures, significant shared parking arrangements, or a combination of these techniques. This project, however, proposes a more typical scale of development that relies on surface parking, with primarily one-story building heights and a limited amount of two-story construction. Total anticipated development is estimated at between 350,000 to 400,000 square feet of leasable floor area, with 1400 to 1500 or more parking spaces, depending upon shared parking arrangements. At 400,000 square feet, the F.A.R. for this part of the project would be 0.21.

As noted earlier, this property is within the City’s CR Zone, which permits a wide range of land uses, however, no residential uses would be allowed as part of this project. The proposed specific plan envisions a mixed-use commercial center, with an emphasis on retail, dining, entertainment and office
uses. Because this part of the project is not expected to commence until approximately the end of year 2001, the specific range of commercial activities that will be developed has not been determined by the applicant.

Grading and Phasing Plan

As shown on Figure 4, the project is proposed to be developed in three major phases.

Phase 1 would contain five auto sales dealerships in the northwestern part of the site, along with the internal streets, landscaping, lighting, and utilities, as well as perimeter improvements such as walls and signage. This first phase is expected to take six months to complete, with dealerships open for business by mid-1998.

Off-site improvements to be provided in Phase 1 include the adjacent half-width portion of Adams Street (curb/gutter, landscaped median, landscaped parkway and infrastructure extensions), the adjacent half-width portion of Highway 111 (curb/gutter landscaped parkway and necessary infrastructure extensions). Primary site access is proposed to be provided by a signalized, landscaped entry from Highway 111, located in the middle of the highway frontage. A second access would be constructed at Adams Street, opposite Avenue 47. This could be signalized in the future if warrants are met. Utilities would be extended to the eastern boundary of Planning Area 1, and “stubbed out” for future extension into Planning Area 2, when that area is proposed for development.

All of Planning Area 1 would be mass graded as part of the first phase. Rough pads will be established for the individual dealership sites at this time. Total Phase 1 grading is currently estimated at 125,000 cubic yards of earth material, as a balanced operation that would involve no import or export of materials.

Phase 2 is proposed to include four additional pad sites in the southwestern quadrant, plus an area to be dedicated to the Coachella Valley Water District for a future well site in the southwestern corner of the site, and will complete street and utility improvements along the balance of the Highway 111 frontage, to the northeast property corner. This phase would also require approximately six months to complete, with occupancies and business openings estimated to occur by the end of 2000.

The commercial center (Phase 3) would be mass graded at a later time, following City approval of specific development plans for that area. It is currently estimated that this area will be developed in a series of sub-phases, from approximately the year 2001 through the year 2005. Actual phasing will depend upon the prevailing economic conditions. Grading for the commercial center part of the site is currently...
estimated to require the movement of approximately 125,000 cubic yards of earth material, also to occur as a balanced operation, with no import or export.

Circulation and Access

Both State Highway 111 and Adams Street along the project site frontages are currently partially improved. This project would construct adjacent half-width street improvements, along both frontages, in accordance with the City's Circulation Element standards. Highway 111 is designated as a major Arterial, with a half-width of 86 feet. Adams Street is designated as a Primary Arterial, which requires a half-width of 55 feet. Street improvements would include pavement, curb, gutter, bike paths, and sidewalks. Traffic signals would be installed at both the main entrance, from Highway 111 and at the secondary entrance, from Adams Street, at the time signal warrants are met.

A main north/south street ("La Quinta Centre Drive" on Figure 4) is proposed to provide the primary site entrance from Highway 111, and to bisect the site between the auto mall area and the future commercial center. An interior loop road will serve the auto dealerships and provide direct access from Avenue 47. The main drive will be a public street, however, no on-street parking will be allowed and no individual site access will be permitted north of the loop road. The interior loop road will be a public street, with parking permitted on both sides and a center left turn lane that will also be used for vehicle unloading. Proposed street sections for all proposed street improvements are illustrated in Figure 5.

The future commercial center will develop its own internal circulation system, which will be designed to connect to the main entrance road.

Landscape Concept

A "desert oasis" landscaping theme is proposed that will emphasize water efficient materials, provide a mixture of color and form, and minimize the use of turf areas. The western part of the site is proposed to be set back from the ultimate right-of-way of Adams Street by a 20-foot wide landscape area, and from the ultimate right-of-way of Highway 111 with a 50-foot wide landscape setback area. A decorative, solid wall would extend along the interior edge of the entire Adams Street landscape zone and along the interior edge of the Highway 111 setback, ending at the main entrance drive.

Parking areas within the future commercial center will feature the concept of a high canopy tree form to reduce the conflict between landscape elements and project graphics. The auto mall will use tree forms sparingly and concentrate form and color along the street frontage of each dealership. Most of the internal landscape areas will also be used to retain stormwater on-site.
FIGURE 5
Proposed Street Sections
Art in Public Places

In accordance with the City’s requirement for Art in Public Places, a portion of the landscape setback along Highway 111 could be devoted to an art object. This area may also be combined with a bus stop. The specific art form(s) and location(s) have not been designed at this time, and will be subject to City approval.

Proposed Utilities Systems

All required utilities are presently available in the immediate vicinity of the project site, and no major extensions or upgrading of existing off-site facilities have been identified for this project. Proposed utilities improvements are briefly described as follows.

Sewer Plan

Sanitary sewer facilities for La Quinta are provided by Coachella Valley Water District (CVWD). As shown in Exhibit 6 in the Draft Specific Plan (see Appendix A), the project would be connected to the CVWD’s nearest sewer main, an 18-inch sewer located in the adjacent segment of Adams Street. Interior sewers would gravity flow to Adams Street.

Water Plan

CVWD also provides water service La Quinta. A 12-inch main exists in Highway 111 and an 18-inch main is found in Adams Street. A schematic water system plan has been developed for this project, in consultation with CVWD, as illustrated in Exhibit 10 in the Draft Specific Plan (see Appendix A). As shown, the project proposes to construct an 18-inch water main that connects the Adams Street main to the Highway 111 main, through the western half of the project site. In addition, an 18-inch main will be constructed in Highway 111 from the main entrance drive to the easterly property line.

Storm Drainage Plan

Figure 6 illustrates the proposed grading and drainage concepts. The objective of the drainage plan is that any increase in site runoff attributable to the proposed development plan would be retained on-site. Retention areas are proposed to be located throughout the common landscape areas, and in a larger, common retention area to be located in the southwestern part of Phase 3.
Figure 6
Proposed Grading and Drainage Concepts
Other Utilities

Electrical facilities throughout La Quinta are provided by the Imperial Irrigation District. The nearest substation is at Adams Street and the Whitewater River Channel. Preliminary consultations with the District have determined that the design of the project’s electrical service will depend on final load calculations for the overall project. Extensions of facilities along Adams Street and Highway 111 to serve this project will be required to be underground. If necessary, the District has indicated that it can temporarily serve the project with an overhead connection to existing facilities on Adams Street.

Natural gas is provided by the Southern California Gas Company. Their nearest facility is a six-inch line located along the Highway 111 site frontage. This line would be extended into the project site to serve both the auto mall and commercial center areas.

Telephone service is provided by GTE. They have indicated that they are planning to extend a fiber optic cable to the corner of Avenue 48 and Adams Street, and that this project would be served from that location.

INTENDED USES OF THIS EIR

Information included in this document is intended for use by the City of La Quinta, in its evaluation of the proposed project, by other responsible, affected and interested public agencies, and by interested members of the public. Specific actions for which this EIR will be considered are described below.

Discretionary Actions to be Considered by the City of La Quinta

The project site lies totally within the jurisdiction of the City of La Quinta, and it has sole authority with respect to project approval or disapproval. Given this authority, the City is the Lead Agency for this EIR, as defined in the California Environmental Quality Act, and as such, the City is required to consider and certify the EIR, prior to deciding to approve any or all elements of the project. In accordance with the City’s planning and zoning regulations, several discretionary actions are required to approve the project. Each of these is identified by the City’s assigned case number, and briefly described as follows.
Specific Plan

As described earlier, the applicant has submitted a specific plan to define the development principles, guidelines, standards and planning programs that will shape and control the development of this property. All individual development plans proposed for this property would have to be consistent with and adhere to the provisions of the specific plan. A copy of the draft specific plan is included in this EIR as Appendix A.

Tentative Parcel Map No. 28525

As shown in Figure 7, Tentative Parcel Map No. 28525 has been submitted to subdivide this property into 10 parcels for private development, along with additional lots to be devoted to frontage street improvements and various other site improvements such as landscaping along street frontages, a future CVWD well site, and the internal street system.

Conditional Use Permit

Pursuant to the standards of the CR (Regional Commercial) zoning district, approval of a Conditional Use Permit is required to permit the establishment of auto sales and service uses, and to set appropriate controls (or "conditions") on those activities to avoid significant impacts to neighboring properties or the general community. The proposed project includes a Master Conditional Use Permit to govern development of the five auto dealerships proposed in Phase 1, and for the four auto dealerships or auto-related uses proposed in Phase 2.

Site Development Permits

The La Quinta Municipal Code requires approval of individual site development permits for each of the proposed auto dealership sites, to ensure that project design features are consistent with the City’s urban design policies. Five site development permits are being requested for the development of individual auto sales dealerships on proposed parcels 1-5, as shown on Figure 4.

Development Agreement

A development agreement is proposed to define the entitlements for use and development of the property to be granted by the City, to define the public improvements to be provided as part of this project, and to define the City’s financial contribution to certain off-site infrastructure improvements required for this project.
FIGURE 7
TENTATIVE PARCEL MAP NO. 28525
Responsible and Affected Agencies

Several other agencies will also have some authority over certain aspects of project development, as explained below. This EIR is also intended for consideration by these agencies, in the exercise of their responsibilities relative to this project.

The California Department of Transportation has no discretionary authority over project approval, however, it must approve proposed improvements and points of ingress/egress along the State Highway 111 frontage and has permit authority over such improvements.

The Coachella Valley Water District has no discretionary authority over project approval, but off-site and on-site water and sewer facilities are subject to their approval and must be designed and completed in accordance with their specifications.

The Imperial Irrigation District has no discretionary authority over project approval, but off-site and on-site electrical facilities are subject to their approval and must be designed and completed in accordance with their specifications.

Both the California Department of Fish and Game and the U.S. Fish and Wildlife Service are Trustee Agencies, responsible for evaluating potential project-related impacts to rare, threatened or endangered plants and animals that may occur on the project site.
4.0 ENVIRONMENTAL SETTING

INTRODUCTION

CEQA Guidelines Section 15125 requires that an EIR include a description of the environmental conditions that occur on and in the vicinity of the project site, from both a regional and local perspective. This section fulfills that requirement with a description of the relevant physical conditions, as well as applicable land use and environmental quality plans and programs that pertain to or that could be affected by the proposed project. In addition, a summary of current development trends throughout La Quinta is provided. This information is intended to provide the reader with a mental picture of the site and surroundings, and to establish a frame of reference with respect to regional and local planning programs.

REGIONAL SETTING

Coachella Valley

The proposed project site is located within the Coachella Valley portion of central Riverside County, in southern California. The roughly 35-mile long valley lies between the San Bernardino Mountains to the north and the San Jacinto and Santa Rosa Mountains to the south. The Salton Sea marks the southern boundary of the valley and the San Gorgonio Pass and adjacent mountains mark the northern boundary. This area forms the northwest extension of the Colorado Desert in southeastern California. It is characterized by arid, sparsely vegetated desert land. The valley floor is composed generally of sandy soils that were deposited through the effects of water and wind erosion. Westerly winds are persistent, and contribute to extensive erosion and the formation of blowsand activity and sand dunes.

The Coachella Valley is affected by several earthquake faults, including the San Andreas, San Jacinto, Elsinore, Banning, Mission Creek, Clark, Hot Springs, Blue Cut, Sand Hills, and Pinto Mountain faults. The nearest fault is the San Andreas, located approximately 5.2 miles from the project area. It has been estimated that the maximum credible earthquake (theoretical maximum event) along this fault is 8.25 on the Richter scale, and the maximum probable event is estimated at 8.0 on the Richter scale. The most recent seismic activity in the valley area occurred in April, 1992, about 10 miles north of Palm Springs, near the Mission Creek fault, which is part of the San Andreas system.

The Sonoran Desert Scrub ecosystem is the most typical biological environment in the valley. This system is generally characterized as consisting of plants which require little water or which go dormant during periods of drought, or which have both characteristics. Cacti are very common in this habitat, due to their ability to store water. Creosote bush and bur-sage shrubs are also dominant plant types. Variations of
desert vegetation are attributable to differences in the availability of water. A number of small mammals occupy the valley habitats. Squirrels, mice and rats are all common rodent species. The black-tailed hare is a typical medium sized mammal. Predator species include kit fox, coyote, and mountain lion in the higher elevations. A variety of birds, amphibians and reptiles can also be found, including Geckos and Desert Tortoise.

A Desert Transition ecosystem is the second dominant habitat type in the Coachella Valley, found in the alluvial fans and slopes of the surrounding mountains. Plant species in these areas benefit from slightly higher rainfall than in the Sonoran Scrub areas.

Climatic conditions in the valley are classified as continental, desert-type, with hot summers, mild winters and less than six inches of annual rainfall, most of which occurs during the winter months and late summer months. Temperatures typically exceed 100 degrees Fahrenheit during four months each year, with daily highs near 110 degrees during July and August. Summer nights are very comfortable, with minimum temperatures in the mid-70's. During the winter season, daytime highs are typically in the high 60's to low 70's, with early morning lows around 40 degrees.

Strong pressure and air mass density differences between the desert air mass of the valley and the marine-modified coastal air mass of the South Coast Air Basin draw air into the valley. Frequent gusty winds, mainly during the spring and early summer months contribute to concentrations of both particulates and ozone. Strong westerly winds carry ozone into the valley from the Los Angeles Basin, primarily during the late afternoon and evening hours. Strong seasonal winds also contribute to a “blowsand” phenomenon, a major source of naturally occurring airborne particulate matter throughout the valley. Blowsand storms can reduce desert visibility from a typical 35 miles to less than a mile. Such events occur approximately 10 to 15 days per year.

The Coachella Valley is part of the Southeast Desert Air Basin (SEDAB), as defined in the regional Air Quality Management Plan (AQMP) prepared and administered by the South Coast Air Quality Management District (SCAQMD). The AQMP was developed to bring regional air quality into compliance with federal and state air quality standards and to meet California Clean Air Act requirements. Based on regular measurements at air quality monitoring stations found in the SEDAB, the valley air quality currently does not meet federal standards for ozone, carbon monoxide or particulate matter. The entire Riverside County portion of the SEDAB has been designated by the California Air Resources Board as a “non-attainment area” for ozone (smog) and total suspended particulate matter. The standard for PM_{10} (particulate matter 10 microns or less in diameter) is frequently exceeded. PM_{10} becomes suspended in the air due to winds, grading activity and by vehicle traffic along unpaved roads, among other sources.
Transportation and Circulation

Vehicular access to the Coachella Valley is provided by the Interstate 10 Freeway, providing an east-west linkage to the Los Angeles metropolitan area to the west, and to the rest of the country to the east. State Highway 111 is the principal highway through the valley and provides the primary regional access to La Quinta. Both of these circulation routes are part of the Riverside County Congestion Management Plan (CMP).

Prepared by the Riverside County Transportation Commission, the CMP is a comprehensive effort to more directly link land use, transportation and air quality objectives in order to promote reasonable growth management programs that result in better utilization of transportation funds, alleviation of traffic congestion and related impacts and improved air quality. The CMP includes a system of state highways and principal arterials, establishment of a County-wide transportation computer model, development of a consistent methodology for calculating roadway level of service, and Model Traffic Impact Analysis (TIA) guidelines for evaluating the traffic impacts of development. The Riverside County CMP also contains a section which defines participation by local governments in the Coachella Valley Association of Governments' Transportation Uniform Mitigation Fee (TUMF) or similar fee program. In addition, adoption of Travel Demand Management (TDM) ordinances is required for participating local governments. The City of La Quinta does not participate in the TUMF program, but administers its own, equivalent traffic impact fee program. The City has also adopted a TDM ordinance that complies with the CMP guidelines.

Section 5.5 of this EIR evaluates the transportation/circulation impacts of the proposed project, including potential impacts on affected segments of the CMP system, and with respect to consistency with the City’s TDM ordinance.

Regional Comprehensive Plan and Guide

The Southern California Association of Governments (SCAG) is a council of governments representing Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura counties. SCAG is a regional planning agency and serves as a forum for addressing regional issues concerning transportation, the economy, community development and the environment. Policies and programs adopted by SCAG to achieve regional objectives are expressed in their Regional Comprehensive Plan and Guide (RCPG). SCAG also serves as the regional clearinghouse for projects requiring environmental documentation under federal and state law. In this role, SCAG reviews proposed development and infrastructure projects to analyze their impacts on SCAG’s regional planning efforts. In their response to the Notice of
Preparation of an EIR for this project (see Appendix C), SCAG identified several policies from the RCPG as relevant to the proposed project. These are briefly discussed below.

Growth Management Chapter

- The population, housing, and jobs forecasts, which are adopted by SCAG’s Regional Council and that reflect local plans and policies, shall be used by SCAG in all phases of implementation and review.

RCPG jobs, housing and population forecasts for the Coachella Valley subregion are based on land use designations and policies adopted by the local governments within the valley. Table 3 identifies these forecasts, for the years 1990, 2000, 2010 and 2015.

<table>
<thead>
<tr>
<th>Forecast Year</th>
<th>Population</th>
<th>Housing</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>215,000</td>
<td>126,000</td>
<td>87,000</td>
</tr>
<tr>
<td>2000</td>
<td>330,000</td>
<td>168,000</td>
<td>122,000</td>
</tr>
<tr>
<td>2010</td>
<td>497,000</td>
<td>249,000</td>
<td>163,000</td>
</tr>
<tr>
<td>2015</td>
<td>588,000</td>
<td>293,000</td>
<td>177,000</td>
</tr>
</tbody>
</table>

The subject project site is designated for Mixed/Regional Commercial development in the 1992 La Quinta General Plan, which is intended for development of major retail centers, major office uses, major community facilities and/or major medical facilities, as well as hotels, entertainment uses and automobile-related businesses of a regional nature. The project’s mix of auto sales/services and mixed retail/commercial shopping center activities are consistent with the 1992 La Quinta General Plan land use policies for the Mixed/Regional Commercial designation. In addition, the proposed development intensity of up to 675,000 square feet is less than the maximum that is permitted in accordance with the floor area ratio limitations established for the Mixed/Regional Commercial designation. Employment forecasts developed by SCAG, as shown above, were based on estimates provided by local agencies. Since estimates for La Quinta were based on the 1992 General Plan, the proposed project would be consistent with the Growth Management chapter of the RCPG.

Regional Mobility Element (RME)

- Promote Transportation Demand Management (TDM) programs along with transit and ridesharing facilities as a viable and desirable part of the overall mobility program while recognizing the particular needs of individual subregions.
• Support the extension of TDM program implementation to non-commute trips for public and private sector activities.

The City of La Quinta has adopted a TDM Ordinance (Section 9.180 of the La Quinta Municipal Code), which contains standards for the provision of capital improvements and operational measures to facilitate the development of alternative transportation modes which reduce the total number of single occupant vehicle trips. These standards apply to private sector activities such as the proposed project.

• Support the coordination of land use and transportation decisions with land use and transportation capacity, taking into account the potential for demand management strategies to mitigate travel demand if provided for as part of the entire package.

The proposed project does not include any specific demand management strategies, however, Section 2.60.3 of the proposed Specific Plan (see Appendix A) establishes a requirement to provide bus turnouts and bus shelters, as directed by the local transit operator, and also requires submittal of TDM plans prior to the issuance of building permits for individual Site Development Permits, in accordance with the provisions of the City’s TDM regulations.

This project would consist of a number of separate employers, and many of the jobs that would be created at the project site would be part-time, with a variety of work shifts. Given these circumstances, it would be more difficult to establish a broad employee-based ride-sharing program for this project than, for example, a large, single employer with a common work schedule for all employees. Furthermore, many of the part-time positions at future retail businesses are expected to have work periods later in the day than the critical morning peak commute periods that the City’s TDM regulations are focused on.

• Urban form, land use and site-design policies should include requirements for safe and convenient non-motorized transportation including the development of bicycle and pedestrian-friendly environments near transit.

No major transit facilities occur on or near the project site, and none are planned. Sunline Transit, a local bus service operates a number of routes throughout La Quinta. The City will coordinate review of final site plans with Sunline Transit to determine whether a bus stop or other bus facilities are desirable at the proposed project site, and if so, to accommodate such facilities as part of the project improvements.
Section 2.60.2 of the proposed Specific Plan indicates that sidewalk and bike path improvements will be constructed along the Adams Street and Highway 111 site frontages, as part of the project’s road improvements. These improvements will provide important linkages for pedestrians and bicyclists to reach future transit facilities that may be developed on-site or nearby.

- **Support the use of market incentives as a mechanism to affect and modify behavior toward the use of alternative modes for both commute and non-commute travel.**

Market incentives designed to affect travel behavior are typically applied on a much broader scale than an individual development project, such as toll roads which charge higher fees for peak period travel. There are no active market incentive programs in the La Quinta area which would apply to this project. This project would not conflict with this RME policy, however, because market incentives could be developed at some future time which could be implemented at the project site.

- **Expanded transportation system management by local jurisdictions will be encouraged.**

The City of La Quinta employs the transportation system management technique of traffic signal synchronization on selected segments of Washington Street and Highway 111. Expansion of this system to other segments is anticipated, as funding is available.

Improve the Regional Standard of Living

- **Encourage local jurisdictions’ efforts to achieve a balance between the types of jobs they seek to attract and housing prices.**

- **Encourage patterns of urban development and land use which reduce costs on infrastructure construction and make better use of existing facilities.**

Both of these policies are among the key goals of the City of La Quinta General Plan, which was recently updated. The proposed project site is designated for Mixed/Regional Commercial land uses, thus this project would be located in an appropriate place that has been planned for such activities. All infrastructure facilities that would be required to support the proposed development concept are currently available along adjacent street segments, or within a short distance of the project site.
• Encourage subregions to define an economic strategy to maintain the economic vitality of the subregion, including the development and use of marketing programs, and other economic incentives, which support attainment of subregional goals and policies.

This policy is directed toward subregional entities such as the Coachella Valley Association of Governments, and does not apply to this project.

Improve the Regional Quality of Life

Ten policies are identified which relate to regional goals to attain mobility and clear air, to develop urban forms that enhance the quality of life, that accommodate a diversity of life styles, that preserve open space and natural resources, that are aesthetically pleasing and preserve the character of communities, and which enhance the strategic goal of maintaining the regional quality of life. The City of La Quinta General Plan addresses all of these goals, with objectives, policies and programs that provide guidance for the City’s decision-makers with respect to individual development projects as well as city-wide issues.

Provide Social, Political and Cultural Equity

• Encourage efforts of local jurisdictions in the implementation of programs that increase the supply and quality of housing and provide affordable housing as evaluated in the Regional Housing Needs Assessment.

The proposed project does not include any housing, would not affect any existing housing and would not conflict with any City policies, objectives or programs related to housing supply or affordability.

• Support local jurisdictions and other service providers in their efforts to develop sustainable communities and provide, equally to all members of society, accessible and effective services such as: public education, housing, health care, social services, recreational facilities, law enforcement and fire protection.

This policy is oriented to programs that benefit public and, presumably, other non-profit agencies that provide various services to the residents of the region. As discussed in the Initial Study (Appendix B), no significant impacts on education, housing, health care, social services or recreational facilities are anticipated as a result of this commercial development project. In fact, sales taxes generated by the project would help fund a variety of government services, and impact fees would also be paid to the Desert Sands Unified School District to offset potential impacts related to school age children of future employees. Section 5.10 of this EIR evaluates potential impacts on law enforcement and fire protection services.
LOCAL SETTING

City of La Quinta

La Quinta is a golf resort oriented community located approximately 20 miles from Palm Springs and about a two-hour drive from the Los Angeles/Orange County area. The city currently covers approximately 31.2 square miles of both mountainous and desert terrain. Nearly 13 square miles are protected mountain open space, parkland or golf course open space designations. It is bordered by the cities of Indian Wells on the west, Indio to the east, the unincorporated community of Bermuda Dunes to the north and other unincorporated areas to the south.

Roughly 70 percent of the land within the city is undeveloped, and much of this consists of steep, rocky slopes of the Santa Rosa Mountains. Existing development is concentrated in four general areas: mainly single family homes north of the Coachella Valley Stormwater Channel; golf course and gated single family residential neighborhoods near the La Quinta Hotel; a mix of medium density single-family homes and office and retail uses in the Cove and Village areas; and a mix of attached and detached single family homes and a world-renowned golf course in the resort community of PGA West, located south of Avenue 54. At the time the La Quinta General Plan was completed (October, 1992), it was estimated that approximately 6,000 acres of vacant land suitable for development remained in the city.

La Quinta was incorporated in 1982, with a population of under 3,000. Between 1985 and 1995, La Quinta was one of the fastest growing cities in Riverside County and in the state, with a population growth during that period of 152 percent. Total permanent population at the end of 1995 was 18,046. In addition to its permanent residents, it has been estimated that another 9,300 persons are seasonal residents who live in La Quinta for three to six months of the year.

Between 1991 and 1995, 1,979 new homes were built in the city. The housing stock, at the end of 1995, included 8,624 single family homes, 481 multi-family units and 247 mobile homes. The median home price in La Quinta has been much lower than the rest of southern California, and, at roughly $112,000 has been slightly lower than the median value throughout the Coachella Valley ($115,140).\footnote{City of La Quinta, Community Development Department. \textit{La Quinta California Economic Overview}, 1996 Edition.}

According to the City's Commercial Development Status Report (October, 1996), 1.38 million sq. ft. of retail and just over 69 thousand sq. ft. of office space have been approved for development in the City, but are not yet under construction. In addition the City’s Residential Development Status Report (October, 1995),
1996) indicates that 17,320 housing units have been approved for development, but construction has not yet begun. These totals represent all projects which have been approved since the City’s incorporation, and it is not known how many of the approved/not built projects are still considered likely to be completed.

The City’s existing circulation system is in the early stages of development and consists of a modified grid system of two- and four-lane roadways, mainly following a north-south orientation. Most roads are two-lanes, without curbs and gutters. Four-lane sections and associated improvements are found on major arterials, where most development has occurred. Of the five key roadways in the City’s circulation network, two provide primary access to the project site.

Washington Street, a two-to four-lane major arterial provides north-south access to the Interstate 10 Freeway, located a few miles north of the project site. It also provides the connection from I-10 to State Highway 111, which leads to the project site. Bridge and ramp improvements are currently under construction at the I-10/Washington Street interchange. The signalized intersection of Washington Street and Highway 111 has the highest traffic volumes of any location in La Quinta, with a current Level of Service “D” in both the morning and late afternoon peak traffic periods. Intersection improvements are currently under construction. The intersection of Washington Street and Avenue 48 is currently experiencing heavy congestion, with a Level of Service “F” during both peak periods.

State Highway 111, a four-lane east-west state highway, provides the primary regional access to La Quinta and is a major intra-regional and inter-regional route for the Coachella Valley. The segment between Washington and Jefferson Streets has been the focus of an expanding mixture of commercial development. Adjacent to the project site, current traffic volumes have been measured at approximately 19,000 vehicles per day. Higher volumes have been recorded west of Washington Street and east of Jefferson Street.

Law enforcement services are provided to the City through a contractual arrangement with the Riverside County Sheriff’s Department. Services are provided from the Sheriff’s Indio station. Fire protection services are provided by the Riverside County Fire Department. The Department maintains two stations in the City; Station No. 32 on Avenue 52, west of Washington Street, and Station N. 70, at the intersection of Madison Street and Avenue 54. Please review Section 5.10 of this EIR for an assessment of this project’s potential impacts on Sheriff and Fire Department services.

Public school services are provided in La Quinta by both the Desert Sands Unified School District (DSUSD) and the Coachella Valley Unified School District, however, the elementary, junior high and high
schools found in the city are within the jurisdiction of the DSUSD only. The College of the Desert Community College District also encompasses the City of La Quinta.

Library services are provided by the Riverside County Library System, with a branch library located in the Village area. Local health care providers include the JFK Memorial Hospital in Indio and the Eisenhower Immediate Care Facility located in the “One Eleven La Quinta” shopping center. The Riverside County Health Department also administers a variety of health care programs for area residents, from their Indio office. Paramedic service is provided in La Quinta by Springs Ambulance Service.

Local government services are provided by the City of La Quinta, including general administration, planning, building and safety, public works/engineering, recreation programs, parks maintenance, animal control, and a senior center.

Electrical service in La Quinta is provided by the Imperial Irrigation District (IID), and natural gas service is provided by the Southern California Gas Company. IID has four substations in La Quinta, with a steam plant located in El Centro and hydroelectric power generated by the All American Canal. Telephone services is provided by GTE Incorporated and Colony Cablevision provides cable television service.

Domestic water service is provided by the Coachella Valley Water District (CVWD). CVWD obtains water from underground aquifers and from an allocation of Colorado River water. Potable water is pumped from 13 wells located throughout the city, at depths ranging from 500 to 900 feet. CVWD stores water in five reservoirs located in various parts of the city. CVWD also maintains a stormwater drainage system to collect and transport storm flows through the city.

Trash pick-up service is provided by Waste Management of the Desert. Non-hazardous, mixed-municipal solid waste is currently hauled to the Riverside County-operated Coachella Landfill, which is set to close in May, 1997. Other possible County-operated landfills which could receive wastes after the Coachella Landfill is closed include the Edom Hill, Badlands and Mecca Landfills. A proposal to expand the capacity of the Edom Hill landfill is currently under review, as this facility is scheduled to close in the year 2002. Coachella Valley area communities, including La Quinta, are preparing to haul wastes to the more distant Edom Hill Landfill, as a short-term alternative following closure of the Coachella Landfill, while investigations are underway to develop a new, subregional approach to solid waste management. Section 5.9 of this EIR provides a more detailed discussion of the current solid waste disposal issues confronting La Quinta, and evaluates the project's solid waste generation with respect to potential impacts on the City's solid waste reduction programs.
Project Site

Figure 8 illustrates the present land uses and other notable environmental features on and in the vicinity of the project site. Figure 9 presents photographs of the project site, as viewed from the northeast corner looking west and southwest.

The 87-acre project site has nearly 2,300 feet of frontage along the south side of SR 111 and approximately 1,366 feet of frontage along Adams Street, which forms the western site boundary. Dune Palms Road lies approximately 300 feet east of the eastern site boundary. Portions of the site were previously used for irrigated crop production, which apparently had ceased by the early 1970’s.\(^2\) Isolated fragments of the irrigation system are all that remain from the past agricultural activities. The land is currently vacant, covered by a meandering pattern of sand dunes and sparse dune vegetation, with scattered piles of debris and vehicle tracks evident in several places. Three billboard signs have been posted along the Highway 111 frontage. The site slopes from north to south, with a total average relief of approximately 25 feet.

Vacant land and a small used car sales lot lie directly north, along SR 111. Remains of a small agricultural ranch and a single family home are located to the east. Immediately to the south is vacant land. The Rancho La Quinta golf/residential community is located roughly 1,000 feet south of the project site, south of 48th Avenue. A water tank and the Lake La Quinta residential development are found to the west of the project site.

The City of La Quinta General Plan designates the project site and land to the north, east and immediate south for Mixed/Regional Commercial land uses. High density and low density residential development is planned for land west of Adams Street.

\(^2\) CRM Tech, Cultural Resources Evaluation Report, Stanko Development Co. Project Site at The Intersection of SR 111 and Adams Street in the City of La Quinta, Riverside County, California. January 24, 1997.
4.0 Environmental Setting

Figure 8
Environmental Setting
Figure 9
Site Photos
On-site soils are generally silty sand, classified by the U.S.D.A. Soil Conservation Services within the Coachella and Myoma series. These soils are characterized as being non-plastic, with slow to very slow runoff rates, well drained to excessively drained, and subject to a high erosion hazard. These soils generally have a low corrosivity to concrete and a high corrosivity to steel. No established water sources or surface drainage courses occur on-site and no U.S.G.S. "blueline" streams have been mapped on-site. No active earthquake faults have been found in La Quinta, however, the State Geologist has identified a northwest-southeast trending "inferred fault" near the western edge of this site. Inferred faults have shown no signs of activity within the last 11,000 years and are not considered active. Section 5.2 of this report provides further information concerning the site's geological characteristics and potential constraints to site development.

This property lies within the known habitat of the endangered Coachella Valley Fringe-Toed Lizard, a portion of which occurs in the sand dunes north of Avenue 50, within the City of La Quinta. This habitat is also considered suitable for the rare Flat-Tailed Horned Lizard, a species which is a candidate for listing as endangered by the California Department of Fish and Game. All of the fringe-toed lizard habitat in La Quinta, including the project site, is subject to a development fee of $600 per acre, which is paid into a fund to acquire and maintain habitat in a special lizard preserve area established in the Thousand Palms area. Under the terms of the habitat conservation plan for the fringe-toed lizard, land within the development fee area may be developed without setting aside land on-site, or otherwise providing on-site mitigation for loss of lizard habitat. Please review Section 5.4 of this EIR for additional information concerning the project site's biological resources and the significance of project-related impacts to those resources.

Air quality in the vicinity of the project site is affected by automobile exhaust emissions along Highway 111 and by wind patterns that occasionally carry smog from the Los Angeles basin into the Coachella Valley and which also produce heavy concentrations of particulate emissions on windy days. Please review Section 5.6 of this EIR for more information concerning the ambient air quality in this area and an analysis of how this project would affect local air quality.

The local noise environment is primarily affected by traffic along Highway 111 and Adams Street. Except for minor and occasional noise from residential activities within the nearby Lake La Quinta residential development to the west, there are no other notable noise sources currently affecting the project site. Section 5.7 of this report provides additional information concerning the ambient noise environment in this area, along with an assessment of how this project would change local noise levels.

Long-range views of the Coral Reef and Santa Rosa Mountains are briefly visible to motorists traveling along Highway 111, looking across the site to the south and southwest. Highway 111 and Adams Street
are each designated for special street design treatments as part of the City’s urban design policies to create an outstanding public image as viewed from the City’s major arterials. Highway 111 is currently a four lane, divided arterial, with an unimproved shoulder along both sides of the highway, adjacent to the project site. Adams Street is currently a partially improved two-lane street adjacent to the site. It has an unimproved shoulder along the entire project site frontage, while the western side is fully improved with curb and gutter, a meandering sidewalk, landscaping and a perimeter wall along the boundary of the Lake La Quinta project, from 47th Avenue south to 48th Avenue. Please refer to Section 5.11 of this EIR for a more detailed description of the current visual setting of the project site and for an analysis of this project’s development characteristics with respect to the City’s urban design policies.

All utilities required to serve a large-scale commercial project at the project site are already available along one or both of the site’s street frontages, or within a short distance from a property boundary. Section 5.3 of this EIR discusses water delivery and storage issues associated with this project and Section 5.3 discusses the proposed storm drainage concept and water quality concerns.
5.1 POTENTIAL SECONDARY LAND USE EFFECTS

INTRODUCTION

As indicated in the CEQA Guidelines, the primary objective of an EIR is to disclose the environmental impacts that would occur as a result of a project. The focus of the impact analysis is on the potential for a project to cause "...a substantial adverse change in the physical conditions which exist in the area affected by the proposed project."[1] Economic or social effects related to a proposed project "...shall not be treated as significant effects on the environment. An EIR may trace a chain of cause and effect from a proposed decision on a project through anticipated economic or social changes resulting from the project to physical changes caused in turn by the economic or social changes. The intermediate economic or social changes need not be analyzed in any detail greater than necessary to trace the chain of cause and effect. The focus of the analysis shall be on the physical changes."[2]

This section is devoted to a discussion of potential secondary land use effects that may result from economic effects associated with the first phase of the auto dealer mall proposed for the western half of the project site. The intent of this discussion is to determine whether the proposed auto mall might indirectly result in physical blight at economically affected sites in the neighboring City of Indio. Information and analysis presented in this section is based on a study prepared for this EIR by The Natelson Company, Inc., which is presented in its entirety in Appendix J.

ENVIRONMENTAL SETTING

Four existing automotive dealerships currently located in the City of Indio are expected to relocate to proposed dealer pads 2-5 in Phase 1 of this project. These dealers include:

Mazda Superstore, 83-191 Highway 111. This auto dealership is located on a rectangular, 1.39 acre property, along the south side of Highway 111, just east of Marilyn Street. Surrounding uses include a used auto sales lot on the west side and a furniture sales store and an electric heating/cooling systems business on the east side. An alley forms the southern boundary of this site.

Torre Nissan, 83-368 Highway 111. This auto dealership is located on an irregularly shaped, 3.02 acre property, immediately west of the junction of Auto Center Drive and Highway 111, on the north side of the highway. Adjacent uses include a car wash on the west side, and a vacant, asphalt-covered lot on the east side. This property has frontages along Highway 111 and along Indio Boulevard.

[2] State of California, Office of Planning and Research. CEQA Guidelines, Section 15131(a), as amended through January 1, 1997
Indio Chrysler Center, 83-095 Indio Boulevard. This dealer site offers new and used vehicles. It is located along the south side of Indio Boulevard, between Civic Center Drive and Grace Street, on an irregularly shaped property totaling 1.91 acres. A GTE facility borders the south side of this property, with vacant land on the north side of Indio Boulevard.

Desert Chevrolet, 83-333 Highway 111. This auto dealership is located on a rectangular property of 1.53 acres, along the south side of Highway 111, immediately west of Auto Center Drive. It is bordered by the Sunline Transit terminal facilities on the west side. An alley forms the southern boundary.

Indio Market Areas

To determine the potential secondary land use effects that could occur as a result of the four dealerships from Indio relocating to the proposed project site, it is necessary to understand the characteristics of the Indio market area that would be affected. A “market area” is a term that refers to the geographic extent of the population that comprises the consumer market for a particular type of business category, such as a retail “sector.” Auto dealers and parts is one type of retail sector. Market areas are further delineated into primary and secondary market areas, as well as regional markets. The Natelson Company, Inc. (TNCI) has defined the primary, secondary and regional market areas for Indio as shown on Figure 10.

Population and income characteristics are the primary determinants of the potential dollars available for purchase of goods and services in a market area. These characteristics within the Indio trade areas are described in Tables 4 and 5.

As shown in Table 5, total projected retail demand for the periods shown ranges from a 1995 baseline of approximately $743 million to a year 2010 projection of $1.2 billion. These totals represent approximately 35 percent of the total income available in the various market areas. Typically, the actual proportion of income available for purchase of retail goods and services ranges from 32 to 38 percent, depending on the relative affluence of the particular community.
FIGURE 10
INDIO MARKET AREAS
Table 4
Population Projections: Indio Trade Area

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Market Area</td>
<td>42,100</td>
<td>48,535</td>
<td>53,054</td>
<td>3.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Secondary Market Area</td>
<td>21,050</td>
<td>22,924</td>
<td>26,969</td>
<td>1.8%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Regional Market Area #1</td>
<td>26,690</td>
<td>31,499</td>
<td>47,888</td>
<td>3.6%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Regional Market Area #2</td>
<td>39,455</td>
<td>53,668</td>
<td>70,162</td>
<td>7.2%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Total</td>
<td>129,295</td>
<td>156,626</td>
<td>198,073</td>
<td>4.2%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix I).

Table 5
Total Income and Retail Demand of Market Area Residents
(in thousands of 1995 dollars)

<table>
<thead>
<tr>
<th>Area</th>
<th>1995</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Market Area</td>
<td>$469,548</td>
<td>$541,318</td>
<td>$591,719</td>
</tr>
<tr>
<td>Secondary Market Area</td>
<td>146,289</td>
<td>159,313</td>
<td>187,424</td>
</tr>
<tr>
<td>Regional Market Area #1</td>
<td>280,530</td>
<td>331,078</td>
<td>503,339</td>
</tr>
<tr>
<td>Regional Market Area #2</td>
<td>1,199,957</td>
<td>1,632,221</td>
<td>2,133,858</td>
</tr>
<tr>
<td>Total Income</td>
<td>$2,096,324</td>
<td>$2,663,930</td>
<td>$3,416,340</td>
</tr>
<tr>
<td>Primary Market Area</td>
<td>$197,210</td>
<td>$227,354</td>
<td>$348,522</td>
</tr>
<tr>
<td>Secondary Market Area</td>
<td>55,590</td>
<td>60,539</td>
<td>71,221</td>
</tr>
<tr>
<td>Regional Market Area #1</td>
<td>106,602</td>
<td>125,810</td>
<td>191,269</td>
</tr>
<tr>
<td>Regional Market Area #2</td>
<td>383,986</td>
<td>522,311</td>
<td>682,834</td>
</tr>
<tr>
<td>Total Retail Demand</td>
<td>$743,388</td>
<td>$936,013</td>
<td>$1,193,846</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix I).

Based on historical retail expenditure patterns throughout California, Table 6 illustrates the general distribution of retail sales by retail category. As shown, spending at auto dealers typically comprises approximately 15 percent of all retail expenditures. The majority of retail sales are related to purchases of shoppers goods and convenience goods.
Table 6
Distribution of Sales by Retail Category

<table>
<thead>
<tr>
<th>Retail Category</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopper Goods:</td>
<td></td>
</tr>
<tr>
<td>Apparel</td>
<td>5.44%</td>
</tr>
<tr>
<td>General Merchandise</td>
<td>12.22%</td>
</tr>
<tr>
<td>Furniture/Appliances</td>
<td>4.50%</td>
</tr>
<tr>
<td>Specialty</td>
<td>13.18%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>35.34%</td>
</tr>
<tr>
<td>Convenience Goods:</td>
<td></td>
</tr>
<tr>
<td>Food and Drug</td>
<td>23.53%</td>
</tr>
<tr>
<td>Eating and Drinking</td>
<td>11.34%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>34.87%</td>
</tr>
<tr>
<td>Heavy Commercial Goods:</td>
<td></td>
</tr>
<tr>
<td>Building Materials, Hardware, Farm Implements</td>
<td>6.89%</td>
</tr>
<tr>
<td>Auto Dealers</td>
<td>15.29%</td>
</tr>
<tr>
<td>Service Stations</td>
<td>7.61%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>29.79%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix).

Capture Rates

Another important feature of a given market area is the amount of retail purchases that can be "captured" in that area. In this sense, the term capture means the ability to attract consumers to one area rather than another. Businesses located in primary market areas typically capture most, if not all, of their customers from the local area, as local residents seek the convenience of a nearby shopping location. Capture rates for businesses tend to diminish with distance from their primary market area, due to increased travel times and due to competition by other similar businesses located closer to residents in outlying areas. Tourist-destination places such as San Francisco or Las Vegas represent exceptions to this general rule, as visitors from great distances comprise a significant portion of the consumer base in such tourist-oriented cities.

Estimated capture rates for the Indio market areas are shown in Tables 7 through 10.
Table 7
Capture Rates of Primary Market Area

<table>
<thead>
<tr>
<th>Retail Category</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopper Goods:</td>
<td></td>
</tr>
<tr>
<td>Apparel</td>
<td>95.00%</td>
</tr>
<tr>
<td>General Merchandise</td>
<td>95.00%</td>
</tr>
<tr>
<td>Furniture/Appliances</td>
<td>95.00%</td>
</tr>
<tr>
<td>Specialty</td>
<td>95.00%</td>
</tr>
<tr>
<td>Convenience Goods:</td>
<td></td>
</tr>
<tr>
<td>Food and Drug</td>
<td>100.00%</td>
</tr>
<tr>
<td>Eating and Drinking</td>
<td>95.00%</td>
</tr>
<tr>
<td>Heavy Commercial Goods:</td>
<td></td>
</tr>
<tr>
<td>Building Materials, Hardware, Farm Implements</td>
<td>95.00%</td>
</tr>
<tr>
<td>Auto Dealers</td>
<td>100.00%</td>
</tr>
<tr>
<td>Service Stations</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix I).

Table 8
Capture Rates of Secondary Market Area

<table>
<thead>
<tr>
<th>Retail Category</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopper Goods:</td>
<td></td>
</tr>
<tr>
<td>Apparel</td>
<td>15.00%</td>
</tr>
<tr>
<td>General Merchandise</td>
<td>50.00%</td>
</tr>
<tr>
<td>Furniture/Appliances</td>
<td>15.00%</td>
</tr>
<tr>
<td>Specialty</td>
<td>15.00%</td>
</tr>
<tr>
<td>Convenience Goods:</td>
<td></td>
</tr>
<tr>
<td>Food and Drug</td>
<td>50.00%</td>
</tr>
<tr>
<td>Eating and Drinking</td>
<td>50.00%</td>
</tr>
<tr>
<td>Heavy Commercial Goods:</td>
<td></td>
</tr>
<tr>
<td>Building Materials, Hardware, Farm Implements</td>
<td>50.00%</td>
</tr>
<tr>
<td>Auto Dealers</td>
<td>50.00%</td>
</tr>
<tr>
<td>Service Stations</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix I).
Capture rates for the primary market area are projected to be high due to the tendency of residents to shop within close proximity to their homes. Capture rates for the secondary market area are projected to be lower because of distance and due to availability of competitive retail facilities in closer proximity to residents in that market area. Capture rates for regional market area #1 are estimated to be at low levels because of the distance involved to travel to Indio, even though this area does not have a substantial base of retail facilities. Capture rates for regional market area #2 are projected to be even lower, due to the fact that there are more retail facilities available in this area than in market area #1.
Tables 7 through 10 also indicate that Indio is well positioned to capture a significant percentage of the demand for auto dealers and parts, from all four market areas. Potential capture rates for this retail category range from 100 percent in the primary market area to 50 percent in the other three.

Table 11 presents a comparison of the potential amount of retail demand within the combined Indio market areas that could be captured by Indio businesses, versus the amount of actual sales, for the year 1995. As shown in Table 11, Indio's current auto dealers did, in fact, capture all of the potential demand for such purchases from the four combined market areas (estimated total demand of $71.9 million in sales and actual sales of $72.3 million).

<table>
<thead>
<tr>
<th>Retail Category</th>
<th>1995 Demand</th>
<th>1995 Sales</th>
<th>Expected Less Actual</th>
<th>Percent Actual/ Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopper Goods:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparel</td>
<td>$ 10,645</td>
<td>$ 5,416</td>
<td>$ 5,229</td>
<td>50.88%</td>
</tr>
<tr>
<td>General Merchandise</td>
<td>38,281</td>
<td>38,986</td>
<td>(705)</td>
<td>101.84%</td>
</tr>
<tr>
<td>Furniture/Appliances</td>
<td>8,806</td>
<td>5,262</td>
<td>3,544</td>
<td>59.75%</td>
</tr>
<tr>
<td>Specialty</td>
<td>25,792</td>
<td>13,995</td>
<td>11,797</td>
<td>54.26%</td>
</tr>
<tr>
<td>Convenience Goods:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food and Drug</td>
<td>$ 88,073</td>
<td>$ 87,343</td>
<td>$ 730</td>
<td>99.17%</td>
</tr>
<tr>
<td>Eating and Drinking</td>
<td>28,628</td>
<td>29,340</td>
<td>(712)</td>
<td>102.49%</td>
</tr>
<tr>
<td>Heavy Commercial Goods:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Materials, Hardware, Farm Imp.</td>
<td>$ 21,584</td>
<td>$ 20,202</td>
<td>$ 1,382</td>
<td>93.60%</td>
</tr>
<tr>
<td>Auto Dealers</td>
<td>71,909</td>
<td>72,309</td>
<td>(400)</td>
<td>100.56%</td>
</tr>
<tr>
<td>Service Stations</td>
<td>26,212</td>
<td>24,496</td>
<td>1,716</td>
<td>93.45%</td>
</tr>
</tbody>
</table>

Source: The Natelson Company, March 11, 1997. (See Appendix J).

Table 11 also illustrates some “leakage” of retail expenditures in several categories, where actual sales in Indio fell well below the potential demand based on estimated capture rates for those categories. Retail categories where such leakage occurred included Apparel, Furniture/Appliances, and Specialty. Examples of “specialty” retail businesses include: gift stores, sporting goods stores, florists, bookstores, office supply stores, mobile home dealers and boat/motorcycle dealers. These categories represent opportunities for development of new businesses within Indio that could capture some of the sales that are currently “leaking” to other market areas.

Proposed Desert Cities Auto Center

A proposal to develop a new auto dealer mall in the unincorporated Bermuda Dunes area, known as the “Desert Cities Auto Center,” is under consideration by the Riverside County Board of Supervisors. It
would include five dealerships on a 30 acre site. This project is located along the north side of Interstate 10, immediately west of Adams Street, and is within Indio's regional market area #2, as previously described. If this project is approved and developed as proposed, it would represent additional competition for auto dealers throughout the entire Coachella Valley, including those located in Indio and the dealers that occupy lots within the proposed project in La Quinta.

IMPACT ANALYSIS

Impact Significance Criteria

As noted in the introduction to this section, the California Environmental Quality Act does not consider economic effects to be significant, with respect to the purpose of an EIR. Economic effects may be evaluated to help determine the significance of physical changes related to those economic effects. Therefore, for the purpose of this EIR, project impacts would be considered significant if the sites of the four dealers expected to move to the proposed project site from their current locations within the City of Indio could not be redeveloped or re-occupied for an economically viable or otherwise socially productive use, thus leading to potential physical deterioration of those sites and possibly neighboring properties.

Project Impacts

The proposed project includes an auto sales/services mall of up to 275,000 square feet of facilities, to be developed in two phases on the western 43.5 acres of the subject property. Five dealership pads are included in the first phase, located in the northwestern quadrant of the site. Phase 1 is tentatively scheduled to be completed and open for business by mid-1998. As stated earlier in this section, four of the pads in the first phase area are expected to be occupied by dealerships that currently occupy sites within the City of Indio. An immediate physical effect of these relocations would be that those Indio sites would become vacant. Existing site improvements would likely remain in place, as there has been no indication of plans to redevelop or re-use those sites by other businesses or non-profit activities. It cannot presently be determined how long a period of time these sites would remain in a vacant condition. This is not expected to be a permanent condition, however, as discussed below.

Each of the four affected Indio dealer sites currently enjoys excellent accessibility and visibility. All four sites are located on major streets in the City of Indio and are readily accessible to local residents and people from surrounding communities. All four sites are situated near the interchange of State Highway 111 and Indio Boulevard, which is highly visible to many motorists traveling through Indio via either of these roadways. In terms of locational advantages, all of these sites are well positioned as a potential
place for a new business that targets the apparel, furniture/appliances and special retail sectors that have been “leaking” to other communities, as discussed earlier.

There are some disadvantages associated with the size and surroundings of each of the Indio dealer sites. Each site is relatively small (less than or equal to three acres in size), making it difficult to attract the majority of free-standing retailers, most of whom would require at least five acres or more for a normal-size facility. Also, because none of these lots are contiguous to each other, they cannot be consolidated to form a large, more marketable parcel. These disadvantages can be overcome, however. For example, it may be possible to use one or more of these sites to expand existing, adjacent businesses, whether through additional building area or through additional parking spaces. Another possibility would entail re-use or redevelopment of these sites with smaller, single use retail stores, or perhaps small multi-tenant centers geared to specialty retail stores that are designed to attract the unmet consumer demand in this category.

A recent economic impact assessment of the proposed Desert Cities Auto Mall noted that several existing dealers in the City of Indio would be relocating to that project and could have a potentially adverse physical impact at the vacated sites. That study further indicated that the City of Indio would be addressing this potential impact by undertaking a reuse study to develop strategies to redevelop and/or reuse properties in the downtown redevelopment area, including the four auto dealer sites discussed above.

Given the substantial unmet demand for retail purchases in the Apparel, Furniture/Appliances and Specialty categories, as estimated by the Natelson Company, and the anticipated efforts by the City of Indio to assist downtown land owners in developing reuse strategies for vacated sites, it appears that the four Indio dealer sites affected by this project have a potential for economically viable reuse. Physical blight of one or more of these sites is not unavoidable. It is concluded, therefore, that no significant land use impacts at the four affected sites in Indio are anticipated as a result of this project.

Cumulative Impacts

This project’s auto mall, combined with the proposed Desert Cities Auto Center, would represent new competition for auto dealerships in Indio, Cathedral City and other places with auto sales dealers located in the Coachella Valley. In this free enterprise system, dealer owners may relocate from one location to another as they desire, and other entrepreneurs may enter the area to compete with additional dealerships in the future. The cumulative impact of such competition may result in adverse land use impacts to properties which are not able to sustain a viable business in the face of such competition and for which no replacement activities, of any kind, are found to re-occupy such sites. In those circumstances, deterioration of such properties could occur, if the vacant conditions become long-term or permanent.

Given the many dynamics present in any economy, and the high probability of continuing changes in the business climate throughout the Coachella Valley, the likelihood of adverse land use impacts related to cumulative economic effects associated with competition for auto sales and services or any other retail goods, cannot be quantified or accurately determined. Private market efforts, together with public-private partnerships, non-profits and community-based organizations can and do develop solutions to problems that result from economic competition. These efforts could, therefore, prevent any significant, long-term cumulative land use impacts associated with the kinds of economic impacts discussed in this section.

MITIGATION MEASURES

No significant land use impacts related to the project’s economic effects have been identified. No mitigation measures are required.

UNAVOIDABLE SIGNIFICANT IMPACTS

None anticipated.
5.2 GEOTECHNICAL CONSIDERATIONS

INTRODUCTION

A preliminary evaluation of seismic and other geological constraints potentially affecting development of the project site was conducted as part of the Initial Study prepared for this project (see Appendix B). Based on previous research conducted as part of the 1992 La Quinta General Plan program, the Initial Study determined that significant constraints are not present with respect to seiches, tsunami or volcanic eruptions; landslides or mudslides; or unique geologic or physical features. Additional study was recommended, however, with respect to typical seismic safety issues (fault rupture, ground shaking, liquefaction) and ground instability (erosion, subsidence, expansion). This section discusses these issues.

Much of the information that is presented in the following pages is based on a Geotechnical Feasibility Report, dated January 20, 1997 and an Addendum to that report dated March 6, 1997, prepared by Earth Systems Consultants. These reports are provided in Appendix D. Where appropriate, this material has been supplemented with information contained in the La Quinta General Plan.

ENVIRONMENTAL SETTING

Regional Geology and Seismicity

The site is located in the Coachella Valley, which is part of the Colorado Desert geomorphic province of California. The dominant physiographic feature is the Salton Trough, which is a large northwest-trending structural depression that extends approximately 180 miles from the head of the Gulf of California to the San Gorgonio Pass near Palm Springs. Much of the depression in the Salton Sea area is below sea level.

The Coachella Valley forms the northerly portion of the Salton Trough, and is underlain by a thick sequence of sedimentary rocks that are Miocene to Recent in age. Mountains surrounding the Coachella Valley include the Little San Bernardino Mountains on the northeast, foothills of the San Bernardino Mountains on the west, and the San Jacinto and Santa Rosa Mountains on the southwest. These mountains are composed primarily of Precambrian metamorphic rocks and Mesozoic granitic rocks. The San Andreas fault zone is located along the northeastern margin of the Coachella Valley, aligned generally parallel to the long-axis of the Salton Trough. The project site is located approximately 5 1/2 miles southwest of the San Andreas fault.

Seismic Considerations at Project Site
5.2 Geotechnical Considerations

Fault Rupture

Fault ruptures most commonly occur along previously established fault traces. However, fault rupture may also occur at other locations not previously mapped. The project site is not located within an Alquist-Priolo Special Studies Zone, nor are any “active” faults known to exist within the immediate vicinity of the site, or anywhere else in La Quinta. An “inferred fault” is shown traversing the western edge of the project site, in a northwest to southeast direction, on Figure 4.2-4 of the La Quinta General Plan Final EIR. This feature was identified during studies by the California Division of Mines and Geology several years ago, as part of Alquist-Priolo Special Studies to map known earthquake faults throughout the state. The Final EIR notes that “These fault traces do not exhibit any evidence of Holocene movement (i.e., within the last 11,000 years) and are not considered active.” Seismically induced ground rupture, or earth cracking, is not considered a significant hazard on-site or in surrounding areas.

Additionally, ground rupture produced through ground-shaking of regionally active faults is not considered likely, although the possibility cannot be entirely discounted.

Ground Shaking

Strong ground motions generated by nearby earthquakes can be expected to occur during the design life of the proposed development. Based upon the historical and prehistoric record, the Coachella Valley segment of the San Andreas fault is likely to generate a 7.5 magnitude or greater earthquake within the next 50 years, especially if it ruptures with the adjacent San Bernardino segment. This earthquake represents the strongest ground shaking potential for the site. Peak accelerations are estimated to range from 0.55g to 0.75g, based on attenuation curves prepared by Boore, Joyner and Fumel (1994) and Campbell (1990). Based on the site distance from the San Andreas Fault and the predicted levels of ground acceleration, the project site is within a relatively high ground shaking hazard area. This level of ground shaking potential is typical of northern La Quinta and most of Indio, and of many other areas of the Coachella Valley where development has occurred.

Soils Conditions at Project Site

Surface Conditions

Site topography consists of undeveloped desert. Remains of previous irrigation system improvements in the form of concrete risers and at least two wells were observed during Earth System’s field investigations (December, 1996). No bedrock was observed at the ground surface or within the exploratory borings. Conditions at the project site have not changed since December, 1996.
Near-Surface Soil Conditions

Based upon an examination of material encountered in exploratory borings, Earth Systems Consultants has characterized the native near-surface soil conditions as follows:

Site soils consisted predominately of silty Sand (SM), very fine to fine grained with silt layers. The silt content varied with depth within each boring. In Boring 1, (in the north/central part of the site) the soils from 15 to 21 feet were slightly more silty. In Borings 2 and 3 (northeast and southeast part of the site) there was a 2 inch silt lens at depths of 10 and 15 feet, respectively. In Boring 4 (northwest corner of site) and 5 (southwest corner of site) the soils became more silty and had interbedded silt layers at depths of 5 to 10 feet, respectively. Moisture conditions varied throughout the borings ranging from dry in the upper soils to slightly moist to the depths explored.

The contacts between subsurface materials as revealed in the borings are considered to be gradational. The native surface soils on the site were mapped by the Soil Conservation Service (September, 1980) as belonging to the Coachella Series and the Myoma Series. These soils series are described as a very fine to fine-grained sand. This soil type is characterized as being non-plastic, slow to very slow runoff rates, well drained to excessively drained soil, and a high erosion hazard. These soils are nearly level terraces or alluvial fans with a hummocky surface (sand dunes) due to wind. These soils are classified as having a low corrosivity to concrete and a high corrosivity to steel.

Groundwater

No free flowing subsurface water was encountered in the exploratory borings conducted by Earth Systems Consultants, which were drilled to depths exceeding 40 feet. Fluctuations in the level of subsurface water can occur due to variations in rainfall, temperature, and other factors not evident at the time that the observations were made. Previous studies of local groundwater conditions indicated that depth to groundwater has historically averaged more than 100 feet.¹

5.2 Geotechnical Considerations

IMPACT ANALYSIS

Impact Significance Criteria

Appendix G of the CEQA Guidelines indicates that a project will have a significant impact with respect to geotechnical concerns if it will expose people or structures to major geologic hazards. Project impacts are analyzed with respect to the seismic and soils constraints discussed previously in this section to determine whether the proposed development plan would expose people or structures to major geologic hazards.

Project Impacts

Seismic Hazards

The project site is located within a seismically active region, however, the level of ground shaking expected in the project area is typical of this part of La Quinta and many parts of the Coachella Valley. Compliance with foundation and building design criteria specified in the Uniform Building Code is considered adequate to mitigate ground shaking hazards to below a level of significant.

No active earthquake faults occur on-site or anywhere within La Quinta. As stated earlier, the inferred fault trace in the western edge of the project site is not considered active, and it is not considered a major geologic hazard.

Ground Stability

Soil Expansion: The surface and near surface native silty sand soils exhibit a very low (expansive) potential when subjected to fluctuations in water content. Disturbed soil samples from the site of the near surface silty Sand (SM) were tested for plasticity. The testing indicates that soils are non-plastic. Therefore, no special consideration is necessary for expansive soil criteria, and expansive soils do not represent a major geologic hazard for this project.

Surface Drainage: Proper engineering of the final surface drainage system is necessary to limit potential ground instability associated with near surface ponding and/or erosion. The actual drainage and erosion control plan may vary due to design and location of the proposed structures, proposed earthwork, and final grades, but such controls are routine and readily available. No major geologic hazards are anticipated due to developed site drainage patterns.
Liquefaction: Earthquake-induced vibration can be the cause of several significant phenomena, including liquefaction in fine grained sands and silty sands. Liquefaction results in a complete loss of soil strength and can cause structures to settle or even overturn if it occurs at the bearing zone. Liquefaction is typically limited to the upper 40 feet of the subsurface soil; however, it can occur as deep as 100 feet with surface reaction being negligible. Four items are generally considered to have the most significance in liquefaction: 1) Fine grained sands and silty sands that are poorly graded are the soil types most susceptible to liquefaction. Poor gradation can be identified by a Uniformity of Coefficient between 2 and 10. Soils that contain a wide range of soil particle sizes and coarse soils that drain freely are not generally susceptible to liquefaction. 2) The water table, perched or otherwise, usually must be within the upper 40 feet of soils for liquefaction to occur. Soils above the water table cannot liquefy. 3) Liquefaction has been shown to be unlikely where the relative density of the soil is greater than 70 percent. A soil that has a relative density of less than 70 percent may liquefy depending on a number of factors. The two predominate factors are the strength and duration of the seismic shaking and the percentage of soil particles that are silt and clay sized. 4) If the clay content (determined by the percent finer than 0.005 mm) is greater than 30 percent, the soil is usually considered non-liquefiable, unless the clay is extremely sensitive.

Three of the borings conducted by Earth Systems Consultants were drilled to depths in excess of 40 feet below the existing ground surface, to provide a basis for evaluation of the liquefaction potential at the site. Free-flowing groundwater was not encountered in any of the borings at the time of the field investigations and the soil materials encountered were generally medium-dense between the depth of 20 to 40 feet below existing grade. Based on the boring results, Earth Systems Consultants concluded that the liquefaction potential at the site is very low.

Ground Lurching: Ground lurching is generally associated with fault rupture and liquefaction. Because the distance of the site from known "active" faults and its relatively flat nature, the likelihood for ground lurching to affect the site is considered low.

Subsidence or Settlement: Settlement, whether seismically related or not, is considered a potential hazard in this area. Historic records report significant episodes of settlement in the Coachella Valley are due to seismic forces and/or heavy rain fall and flooding. Settlement occurs when the soil underlying a site experiences a decrease in volume (becomes more compact), and usually occurs due to loading created by the construction of a building or a change in the moisture content of the soil. This compaction is possible because soils are generally deposited in a relatively loose condition at the ground surface, and undergo only partial compaction as additional soils are deposited on top of them. The construction of a building and the introduction of water from landscaping activities can create the impetus for soils to become more
compacted due to the overlying weight of the soil and structures. Failure to control excess moisture in compacted fill and landscaped areas could result in settlement and soil erosion, which could compound the problem by rupturing water lines or other services and/or utilities, thus introducing additional moisture into the underlying soil. The intent of soil engineering studies is to identify the degree to which the soils are already compacted, and therefore the potential for future settlement as the soils compact to their theoretical maximum density. The hazard posed by settlement is that the soils may compact to different degrees in different portions of the site (referred to as differential settlement) which would damage the foundation of the structures (i.e., if the underlying soil settled 2 inches under one side of a building and 8 inches on the other side, there would be a 6-inch difference in the elevation of the building foundation that was not considered in the design of the structure).

All soils generally pose a potential for some settlement. However, settlement is an issue that can usually be mitigated during construction using common construction techniques. In the area of the subject site, this may involve excavating, moisture-conditioning, and recompacting the upper 3 to 5 feet of soil prior to construction to minimize the potential for subsequent settlement after construction. This technique is used on virtually all construction sites in the site vicinity. Other mitigation techniques could include using pile foundations (to minimize the load added to near-surface soils), and prewatering deeper collapsible soils to induce settlement prior to construction activities. Pile foundations are more frequently used on heavier structures or in soils with very poor inherent bearing capacities. Prewatering is usually used when the soils with a high potential for settlement are too deep to feasibly excavate and recompact. For the subject site, the Geotechnical Feasibility study indicated that neither piles nor prewatering will likely be necessary, and excavation and recompaction will likely be suitable for mitigating the potential for settlement. Since excavation and recompaction are fairly low-cost construction techniques, settlement is not considered a major geologic hazard for the proposed project.

Wind Erosion: Soils at the site are susceptible to wind erosion. In fact, surficial materials in the site vicinity consist primarily of wind-blown sand. During periods of high wind, this sand can be mobilized resulting in localized areas of erosion and/or deposition. Both effects are detrimental to the constructability of the site; erosion because it removes material intended to be the foundation of the structures, and deposition because the wind-blown sand is uncompacted and highly susceptible to future settlement.

Mitigation measures to control erosion during construction include keeping the soil moist by frequent watering. After construction, when frequent watering is no longer feasible, erosion can be mitigated by installing wind-breaks and planting native grasses and brush to minimize the contact of the wind against
the ground. In either case, wind erosion is a factor that can be readily mitigated through implementation of selected engineering measures, and this is not considered a major geologic hazard for this project.

Conclusion Regarding Site Suitability

Based on the findings of the field and laboratory investigation and an engineering analysis of the collected data, Earth Systems Consultants concluded that the site is suitable from a geotechnical standpoint for the proposed development. However, the dry and loose upper soils will require special consideration to control differential settlement.

Cumulative Impacts

Normally, development of a specific site does not affect geological conditions on neighboring lands to any significant extent, except where grading and site preparation require exceptional techniques such as blasting that could generate vibrations to surrounding sites, or, for example, where slant drilling for water or petroleum resources diminishes the level of soil compression at an adjacent site. The proposed project would not require any exceptional techniques for grading or building site preparation. No other projects are currently proposed on land that abuts the project site and there are no unique geological or physical features that extend from the project site to abutting land that could be impacted by development of the proposed project. As discussed previously in this section, development of the project site, as proposed, would expose additional persons and structures to seismic hazards and soils constraints that are typical for the area. This project would not have a significant cumulative impact with respect to geotechnical considerations.

MITIGATION MEASURES

Soils Engineering Studies and Engineering Oversight

G1. Once the location, size and loading conditions for the proposed buildings have been determined, conduct design level soil engineering studies on a lot by lot basis, if necessary. Those studies will include drilled test borings, laboratory testing program and a design level report. The report will provide criteria for design of foundations, slab-on-grade construction, site grading specifications and utility trench backfill recommendations.
G2. The project soil engineer will review the grading plans and project improvement plans for the projects prior to construction. The review is intended to determine compliance with the intent of the recommendations contained in the soils engineering report.
G3. Site grading and construction will be observed by the project soil engineer and tested, as necessary, to determine general compliance with the recommendations contained in the soils engineering report. In addition, the soil engineer will observe conditions exposed by the grading and record significant features and/or changes that may be exposed. Various aspects of grading will be covered in a pre-construction conference with representatives of the owner, grading contractor, civil engineer and geotechnical engineer.

Seismic Hazard Reduction

G4. Structural design will take into account the anticipated ground shaking characteristics in the design of the proposed buildings for earthquake loading. Project plans and specifications shall satisfy the seismic design parameters set forth in the latest addition of the Uniform Building Code, as administered by the City of La Quinta. These criteria are considered minimum guidelines for project structural design.

G5. The inferred fault trace in the western edge of the project site is not considered active and is not recognized as a major geologic hazard. Pursuant to La Quinta General Plan Policy 8-1.1.1, however, further investigation of this part of the site shall be conducted prior to any grading in that area, to more closely analyze this feature to determine whether it contains any significant geological constraints that would require special design or construction measures. If such constraints are found, incorporate appropriate design and construction control measures into grading, foundation and/or structural plans, as recommended by the geotechnical engineer.

Site Development and Grading

G6. Prior to any grading operations, areas which are to receive select structural fill, foundations, pavement sections, or concrete slabs-on-grade must be cleared of pavements, abandoned utilities and old foundations. The depth of the materials to be removed will be observed by a qualified soils engineer when clearing and stripping operations are in progress.

G7. The bottom of depressions created by the removal of existing structures or pavement should be scarified and cross scarified at least 8-inches and recompacted to at least 90 percent of maximum dry density. The depressions should then be backfilled with approved, compacted select structural fill, as specified by the project soils engineer. Clearing and backfill operations will be conducted under the field observation of the soil engineer.
G8. Select structural fill material may be placed in thin lifts, moisture conditioned to near optimum moisture content, and compacted to 90 percent of maximum dry density until finished grade has been obtained. Compaction criteria will be based on the laboratory test procedure ASTM D 1557-91.

G9. The soil engineer will be notified at least 48 hours prior to commencement of any grading operations, so he may coordinate the work in the field with the contractors.

Foundations/Settlement Prevention

G10. The support of a proposed structure may be provided by conventional, strip and spread footings bearing firm reworked native soil or select structural fill, but not on a combination of both. The design criteria for foundations, including detailed reinforcing requirements, will be determined by a site specific soil engineering study, and the design engineer performing the structural analysis of the proposed building and supporting foundations.

G11. Perimeter and interior footings should be founded a minimum 12 to 18 inches into the lowest adjacent, compacted soil pads. Interior footing under concrete slab-on-grade should be founded a minimum of 12 to 15 inches into the compacted soil building pad. Select structural fill should be compacted to at least 90 percent of maximum dry density. For the above conditions, the foundations for a proposed structure may be designed for an allowable bearing pressure range of 2000 to 3000 pounds per square foot for dead plus reasonable live loads. These values may be increased by 1/3 to include short term seismic and wind effects.

G12. The soils engineer will observe foundation excavations prior to placing form boards or placement of reinforcing steel. The purpose of this is to verify the soil density within the bearing soils.

Concrete Slab-on-Grade Construction

G13. Concrete slabs-on-grade associated with high point loads, such as those associated with fork lifts, and those that will be subjected to heavy construction loads, such as those created by a crane lifting concrete panel, should be sufficiently thick and reinforced to accommodate these loads.

G14. For concrete slab-on-grade floor construction in warehouse or maintenance areas where no floor covering will be used (and not subjected to high point loads), a minimum 4 inch layer of 3/4” baserock should be placed and compacted to a minimum of 95 percent of maximum dry density.

5.2-10 The Centre at La Quinta Draft EIR April 1997
If a moisture vapor barrier is used, the barrier should be overlaid by 2 inches of commercial quality sand. The sand should be lightly moistened prior to placing concrete.

G15. Exterior concrete slabs-on-grade, such as driveways, should be founded on at least 6” of approved import baserock, or as specified by the City of La Quinta, which ever is more stringent. The use of reinforcing steel in exterior concrete flatwork is recommended and all construction joints should be held together by steel dowels. It is recommended that exterior concrete flatwork soil areas be premoistened before concrete is placed.

G16. Interior concrete slabs-on-grade should contain reinforcement with the slabs structurally connected to adjacent perimeter foundations. Reinforcing of interior slabs-on-grade will be provided by the structural engineer, based on the proposed usage.

G17. Concrete slabs should be divided into essentially equi-dimensional segments during construction to help control cracking during the curing period. Reinforcing of the concrete slab-on-grade is recommended and the slab should be structurally connected to the perimeter foundations at all door openings. Construction joints should be adequately doweled. If interior slabs are designed as free floating, adequate expansion joint of felt should be placed between the concrete slab and foundation.

G18. Exterior slabs-on-grade, which will experience vehicular traffic, including fork lift traffic, such as driveway aprons and trash bin aprons, should have at least 8 inches of compacted Class II aggregate base rock (R= 78 min.) under the concrete slab; actual thickness is dependent upon the slab thickness and actual traffic loads and volume. The baserock should be compacted to at least 95 percent of maximum dry density.

Utility Trench Backfill

G19. Backfill of utilities within road right-of-way will be placed in strict conformance with the requirements of the governing agency (City of La Quinta, C.V.W.D., Caltrans, etc.).

G20. Utility trench backfill within private property will be placed in strict conformance with the provisions of this report relating to minimum compaction standards. In general, service lines extending inside of the subject property may be backfilled with native soils compacted to a minimum of 90 percent of maximum dry density.
5.2 Geotechnical Considerations

G21. Backfill operations will be observed and tested by the project engineer, to monitor compliance with these recommendations.

Wind Erosion

G22. To control erosion during construction, keep the soil moist by frequent watering. After construction, when frequent watering is no longer feasible, install wind-breaks and plant native grasses and brush on areas reserved for future phases of development, to minimize the contact of the wind against the ground.

Drainage

G23. Where no exterior pavement section abuts the buildings, soil should be backfilled against the exterior footings and the final grade should result in a positive gradient away from the buildings, in order to provide rapid removal of rain and irrigation water away from the foundations.

G24. To help minimize increased moisture into fill material under new foundations and pavements, good site drainage is important. Site drainage should be in the form of roof gutters, catch basin and other drainage facilities. Down-spouts from the roof of the buildings should discharge collected rainwater onto splashblocks, adjacent paved areas, or be tied into a water-tight drainage pipe, which would carry the collected water away from the building areas. Design landscaping and irrigation to prevent excess irrigation and ponding.

UNAVOIDABLE SIGNIFICANT IMPACTS

With proper implementation of the mitigation measures identified above, no significant impacts related to geotechnical considerations are anticipated.
ENVIRONMENTAL SETTING

Surface Hydrology

The project site lies at the upper end of a watershed that generally and gradually slopes to the southeast. As such, no significant upstream flows affect this site. No portion of the project site is within a flood hazard zone; the nearest flood prone areas are flood control channels, including the La Quinta Evacuation Channel ("LEC"), located approximately one-quarter of a mile from the site, and the Whitewater River Channel ("WRC"), located approximately 1,100 feet to the north of the site. The LEC is part of the system of regional flood control facilities maintained by the Coachella Valley Water District (CVWD), throughout La Quinta. The southern end of the LEC receives outflow from the Oleander Reservoir, which stores runoff from the Bear Creek Channel system that captures runoff from the northern slopes of the Santa Rosa Mountains to protect the Cove area. Storm flows in the LEC are conveyed to the Whitewater River Channel, northeast of Jefferson Street and Highway 111. The Whitewater Channel is CVWD's major drainage facility utilized to convey stormwater from La Quinta to the Salton Sea, which is presently used for fishing, boating and as a stopover for a large variety of migratory bird species.

Existing topography on the project site can be described as "hummocky," with the ground surface covered by sparsely vegetated sand dunes. Much of the ground surface has been previously disturbed by row crop farming, recreational vehicle activities and construction of a single family home, which was demolished some time ago. The land slopes generally toward the southeast, with a total relief across the 87-acre site of approximately 25 feet. Existing soil conditions yield an estimated percolation rate of approximately two inches per hours. Existing runoff volumes for a 100-year storm are estimated at 0.2 inches per acre and runoff intensities during such a storm are estimated at 0.17 cubic feet per second (cfs) per acre. This translates into approximately 1.45 acre-feet of volume and a rate of 14.79 cfs for the entire site. Existing runoff tends to concentrate and flow toward the middle of the southern property line, where it ponds during most rainstorms and continues to flow to the southeast, in larger storms.

There are no existing surface drainage facilities on or adjacent to this site, and none are currently planned or programmed for installation. Curb and gutter improvements along the western side of Adams Street, adjacent to the Lake La Quinta community, control surface drainage along that side of Adams Street. New development projects in La Quinta are required to incorporate on-site drainage facilities to retain all

1 Mr. Steve Bigley, Engineering Technician, Coachella Valley Water District. April 15, 1997

5.3-1

The Centre at La Quinta Draft EIR
April 1997
storm flows up to the 100-year event, on-site. Stormwater may not be conveyed to CVWD's regional facilities at this time.

Water Quality

Surface water quality is regulated through the federal Clean Water Act ("CWA"), which requires all communities to develop methods to comply with standards for protecting the quality of water discharged into streams, including stormwater runoff. Nationwide implementation of the CWA is the responsibility of the federal Environmental Protection Agency (EPA), which has established the National Pollutant Discharge Elimination System (NPDES) as the primary implementation program. In California, the State Water Quality Control Board has been authorized to administer the NPDES for the EPA, through its various regional boards. The Colorado River Basin Regional Water Quality Control Board administers NPDES requirements in the Coachella Valley area, which is part of the Colorado River Basin that reaches from Blythe on the east to Riverside on the west. For new development projects, these requirements consist of preparation of Stormwater Pollution Prevention Plans (SWPPPs) in conjunction with applications for construction permits, for projects affecting five acres or more. No specific requirements have been established to-date for developed sites, however, all private and public land and storm drain facilities are subject to discharge restrictions established under the Municipal NPDES permit that covers the cities and unincorporated territory throughout the Coachella Valley. Generally, (with some exemptions) these restrictions prohibit non-stormwater discharges into surface water bodies, which include flood control channels such as the La Quinta Evacuation Channel, Whitewater River Channel and the Salton Sea. In accordance with the Municipal NPDES permit program, CVWD conducts regular tests of the quality of water at selected outflows along the Whitewater Channel. There have been no recent water quality problems identified at any of the sampling locations.²

IMPACT ANALYSIS

Impact Significance Criteria

Appendix G of the CEQA Guidelines indicates that a project will normally have a significant effect on the environment if it will:

- Substantially degrade water quality
- Cause substantial flooding, erosion, or siltation

² Mr. Steve Bigley, Engineering Technician, Coachella Valley Water District. April 15, 1997.
Impacts from a development project can affect water quality during the construction period and following completion of site development. Standards for minimizing impacts on water quality have been developed in accordance with the federal Clean Water Act, through the national Pollutant Discharge Elimination System (NPDES) permit program. During the construction period, the proposed project's impacts would be considered significant if grading and site development activities are not controlled in accordance with the NPDES construction permit requirements established by the Colorado River Regional Water Quality Control Board (RWQCB). These criteria are general, and are intended to minimize the amount of contaminants that could be captured by site runoff and flow to receiving waters, for both project-level and cumulative impacts. For the developed site condition, there are no water quality control standards at the present time that apply to site-specific development projects.

With respect to flood hazards, the project's impacts would be considered significant if no storm drainage plan has been developed to satisfy the flood control standards established by the City of La Quinta. The principal criteria is to retain all 100-year storm flows on-site. In addition, parameters are identified for 3-hour, 8-hour and 24-hour duration storms to be analyzed to determine which storm provides the worst case scenario. The City's criteria also provides protection from the 100-year storm for all on-site structures.

Project and Cumulative Impacts

Water Quality

Grading and preparation of building pads, and installation of underground utilities will involve clearance of all existing vegetation, which will expose bare soils to potential erosion from wind or rain conditions. Eroding soils could be windblown or carried in rain runoff onto adjoining streets and downstream land and could eventually reach the La Quinta Evacuation Channel, located southeast and downstream of the project site. The amount of eroding soil materials from an active, uncontrolled construction site that could reach that flood control channel would not be expected to have a significant impact on downstream water quality.

However, the soil materials running off the project site could combine with a variety of runoff materials from other sources that could eventually be transported, during a rare rainstorm, to the Whitewater Channel. The Whitewater channel is a major regional flood control facilities which receives runoff from the La Quinta Evacuation channel and many other sources. It is mostly unlined, and eventually outlets at the Salton Sea, which is used for fishing and boating. Quality of runoff that is discharged into the Whitewater Channel is regularly sampled to ensure compliance with water quality standards set by the
Colorado Regional Water Quality Control Board. If numerous construction sites are active during the same time frame, and are not properly controlled to prevent erosion and site runoff, a cumulative effect could occur that could increase the level of siltation in runoff reaching the La Quinta Evacuation Channel, Whitewater Channel and eventually the Salton Sea, which could result in significant water quality impacts.

During grading and site construction activities, a variety of construction equipment and vehicles along with fuels, lubricants and cleaning agents normally used in conjunction with such equipment, will be stored on site. In any such storage area, there is a chance of accidental spills of such hazardous materials onto the ground surface. If spills of large volumes should occur, or if there is no containment of spills in the immediate spill area, it is possible that a rare rainstorm could carry some of those contaminants in site runoff that reaches the Whitewater Channel and the Salton Sea, via the La Quinta Evacuation Channel. If this happens, it would be considered a significant impact.

After the project site is developed, as proposed, runoff potential will increase, as a result of increased coverage by impervious surfaces, including streets, buildings and parking areas. Contaminants in the developed site runoff would be most heavily concentrated right after a rainstorm begins, because dust, trash, residues of landscape wastes, and various other particles commonly found on parking lot surfaces (rubber, oil, spilled beverages, gum, food wastes, etc.) have accumulated since the last storm. This first period of pollutant-laden runoff is often referred to as the “first flush.” Other types of potential surface contaminants are not expected, since the project, as proposed, would not include outdoor activity or storage areas which involve the use, storage or disposal of fuels, lubricants, chemical wash wastes, etc.

If first flush runoff is not properly collected and filtered, and is allowed to run off site, this contaminated runoff could contribute to significant cumulative impacts on downstream water quality, through the chain of events involving the La Quinta Evacuation Channel, Whitewater Channel and Salton Sea, as described earlier. As explained later in this section, however, all runoff up to the 100-year storm would be retained on-site, in accordance with City flood control standards. Retention basins would be located in the internal and exterior landscape setbacks to collect storm flows and nuisance runoff. Within these basins, drywells would be installed to accelerate percolation and eliminate standing water from the lower areas. Storm runoff would be filtered as it moves into the retention basin areas, as particulate matter, oils, etc., adhere to vegetation, soils particles and plant roots. Further filtration would occur within the drywells, which often are equipped with sedimentation and debris chambers which capture larger and heavier particles and strain these materials from the water that continues to percolate into the groundwater. As long as the retention areas are properly maintained, no significant water quality impacts are expected to result from this project.
Flood Hazards

Development of the project site, as proposed, would replace the current undeveloped and pervious ground surface with a mostly impervious surface, covered by parking lots, buildings and streets. Developed conditions would change runoff volumes and intensities, as follows.

<table>
<thead>
<tr>
<th></th>
<th>Existing Conditions</th>
<th>Proposed Developed Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runoff Volumes (per acre)</td>
<td>0.2 inches</td>
<td>1.58 inches</td>
</tr>
<tr>
<td>Runoff Intensities (per acre)</td>
<td>0.17 cfs</td>
<td>1.57 cfs</td>
</tr>
</tbody>
</table>

If the increased runoff from the developed site is not properly collected and retained, site runoff could damage on-site structures, and could also contribute to flooding damage at off-site structures and properties.

A preliminary runoff management plan has been prepared for this project (see Appendix K), which is intended to achieve complete on-site retention of storm flows for rainstorms as intensive as a 100-year storm event, in accordance with the City's flood control standards. Figure 11 illustrates the master drainage concept and principal features of the runoff management plan.

The basic concept is to retain runoff from streets and developed sites within retention areas located in the landscape setbacks along the interior street system, and in the landscape setbacks along Adams Street and Highway 111. Retention areas have been preliminary sized to store the amount of runoff predicted to occur during a 100-year storm. The retention area along Highway 111 will accept runoff from a portion of the highway and from the northerly portion of the lots that abut the highway. The capacity of the Highway 111 retention area is approximately 0.227 acre-feet per 100 feet of frontage. The retention area along Adams Street would accept runoff from Adams Street and the westerly portion of the lots that abut Adams Street. The capacity of the Adams Street retention area is approximately 0.05 acre-feet per 100 feet of frontage. The interior landscape retention areas would accept runoff from the adjacent lots. The capacity of the interior landscape retention areas is approximately 0.043 acre-feet per 100 feet of street frontage.

Drywells are proposed within the lower spots of the retention areas to accelerate the percolation (draw down) of retention areas and to eliminate standing water conditions. Sizing of retention areas in the preliminary runoff management plan did not assume any specific level of performance by the drywells, therefore, the drywells would improve retention capacity beyond what is identified in the preliminary
plan. Regular cleaning of the upper chambers of the drywells would be necessary,
5.3 Hydrology/Water Quality

Figure 11
Runoff Management Plan
(8 1/2 X 11, Black and White)
however, to maintain their full effectiveness for water storage and filtration. Illustrations of typical drywell designs are included in Appendix K.

During each phase of development, the retention areas designed to serve that phase would be constructed. In addition, a small, temporary common retention basin is proposed to be constructed near the intersection of La Quinta Centre Drive and Auto Centre Way, to store excess runoff from the auto mall area that would overflow the retention basins in that side of the project site. When the commercial center plans are finalized, a stormwater retention plan will also need to be developed for that area, including retention of the overflow from the auto mall area. Property owners associations will need to be established to maintain the retention areas and drywells associated with their portion of the development.

Based on the proposed runoff management plan, no off-site runoff is anticipated in any storm less than the 100-year event. Therefore, no significant flooding impacts to off-site properties, structures, streets or storm drainage and flood control facilities are expected from this project.

MITIGATION MEASURES

HW1. Prior to the issuance of any grading permits, a stormwater pollution prevention plan (SWPPP) shall be completed, to the satisfaction of the Colorado Regional Water Quality Control Board and the City of La Quinta. The SWPPP shall include measures to minimize the generation of fugitive dust, prevent erosion and prevent and contain hazardous materials spills. Specific elements of the SWPPP may include, but are not limited to:

- Dust controls as specified in project PM$_{10}$ plan (see Section 5.6 Air Quality for further description).
- Installation of sand bags at existing and proposed storm drain inlets
- Soil stabilizing of future phase areas after rough grading
- Covering construction access roads with gravel
- Watering site throughout grading
- Minimize the number of separate construction and vehicle storage and staging areas, to simplify the collection and disposal of contaminants.
- Identifying the location of fuel storage areas.
- Erect barriers around vehicle storage and staging areas and around fuel storage areas, to prevent intrusion by unauthorized persons after construction hours
- An ongoing monitoring plan, to ensure that water quality controls are repeated and properly implemented in subsequent construction phases. The monitoring plan should include
objectives, parameters for monitoring, schedules, evaluation and actions required. Provide regular monitoring reports, throughout each construction phase.

HW2. Final grading and drainage plans for each phase of development shall incorporate retention facilities, and shall prove to the satisfaction of the City of La Quinta that there will be no site runoff for rainstorms up to and including the 100-year event.

HW3. To ensure the continued effectiveness of the storm drainage and retention facilities, property owner maintenance associations shall be established to regularly clean and maintain landscaping, storm drainage facilities and retention areas, including drywells, which support those properties.
5.4 BIOLOGICAL RESOURCES

INTRODUCTION

This section focuses on the common and special-status biological resources within the proposed Centre at La Quinta project area, the potential significant adverse impacts on those resources as a result of proposed development within the project area, and measures to mitigate these impacts. The information contained in this section is summarized from a prior assessment of the biological resources of the La Quinta project site entitled Biological Assessment and Impact Analysis of the Proposed Centre at La Quinta Located Within the City of La Quinta, California, prepared by James W. Cornett Ecological Consultants and dated March 8, 1997 (see Appendix E). An analysis of this report was conducted by biologists at Impact Sciences, Inc., including a field reconnaissance visit to verify site characteristics as presented in the earlier report. Additional focused surveys for special-status biological resources were also conducted by Impact Sciences, Inc. The results of these surveys are included in this section.

Agencies that have jurisdiction over the biological resources on the site include the California Department of Fish and Game (CDFG) and the U.S. Fish and Wildlife Service (USFWS). Potential impacts on biological resources that are governed by certain laws and regulations of these agencies are also addressed in this section.

METHODOLOGY

Literature Review

Prior to the initiation of field work, a review of the literature and museum records was conducted by James W. Cornett - Ecological Consultants (JWCEC). Special attention was given to the identification of special-status plants, wildlife, or habitat types known to occur in the vicinity of the project site. Records, collections, and staff of the University of California at Riverside Herbarium, the Living Desert Reserve, and the Palm Springs Desert Museum were consulted for specific information as to species occurrence. A natural diversity data base search was also conducted. Finally, personnel from the Bureau of Land Management, CDFG, and USFWS were contacted for information regarding the sensitive biological elements of the project site and vicinity and concerns regarding rare, candidate or listed species.

In preparation for field surveys, Impact Sciences, Inc., conducted California Natural Diversity Database (CNDDB) and Californian Native Plant Society (CNPS) database searches for historical occurrences of special-status plants in the region. Searches were conducted for the La Quinta and surrounding United States Geological Survey (USGS) topographic quadrangle maps.
Field Studies

Biological field surveys were conducted December 27 through 29, 1996, by JWCEC to inventory plant and wildlife species present on site. Plant specimens were identified with reference to Hickman (1993), Smith (1994), Munz (1974), and Jaeger (1969). Wildlife specimens were identified with reference to Stebbins (1985), Jameson and Peeter (1988), and Peterson (1990). Plant and wildlife surveys were conducted by walking north-south transects at ten-meter intervals through the project site and 25 meters beyond all site boundaries. Large and small mammal trapping was conducted for two 24-hour periods. Animal surveys were also performed at night by driving slowly down paved and unpaved roads within and adjacent to the project site.

A reconnaissance-level field survey was conducted on February 18, 1997, by Gwendolyn Kenney of Impact Sciences, Inc., to confirm previous floral and faunal characterizations of the site by JWEC and to document any changes to these resources since the time of the 1996 JWEC surveys. In addition, because the 1996 site surveys were conducted during a time period not generally considered conducive to observing flowering plants, Ms. Kenney conducted focused surveys on April 10 and 11, 1997, for special-status plant species potentially occurring on the site. The dates of the surveys coincided with the blooming period of each of these plant species or at a time period during which these species are readily identified. The surveys were conducted by walking 10-meter wide belt transects covering 100 percent of the project site. All vascular plants encountered in the field were recorded. Focused surveys for special-status wildlife species potentially occurring on the site were not conducted. However, efforts were made to note and document special-status wildlife species occurring on the site during the course of the plant surveys. Observations of all common wildlife species during the surveys were recorded and documented.

EXISTING BIOLOGICAL ENVIRONMENT

General Site Conditions

The site is characterized by desert scrub vegetation and scattered sand hummocks which rise approximately seven to twenty feet above their base. The hummocks have been formed by mesquite shrubs which interrupt the flow of sand-carrying wind coming from the west. The shrubs sufficiently reduce wind velocity to result in sand deposits or “hummocks.” There are no naturally occurring springs, permanent aquatic habitats or drainages on the project site. In addition, no blue-line streams, as depicted on USGS topographical maps, exist within the project boundaries.
The entire site exhibits disturbance due to off-road vehicle use and human intrusion. The western third of the site has been used for illegal dumping activities in the past. The north-central portion of the site was previously graded to create a vineyard, which has been abandoned for at least fifteen years. Foundation remains of a former home rest atop a large hummock in the northeast corner of the site.

Commercial and residential development exist to the northwest and west, respectively of the site, with open desert existing directly to the north, across Highway 111. Roadways (Adams Street and Highway 111) are on the west and north of the site. Lands to the east consist of fruit groves and open desert also existing to the north. To the south lies an area of open desert which terminates against a residential development.

Vegetation Communities

The project site is dominated by a single vegetation community, Sonoran Creosote Bush Scrub. Scattered mesquite hummocks also occur on the site, primarily in the northeastern and eastern portions of the site. Each of these communities, and the plant species that characterize them, are described below. A complete list of the plant species observed on the site during the 1996 surveys is found in Appendix E.

Sonoran Creosote Bush Scrub

The dominant plant community on the project site is Sonoran creosote bush scrub. This community is described in detail in Holland (1986). Creosote bush (Larrea tridentata), dominates the vegetation of the project site and is the most abundant shrub species of the entire Colorado Desert of southeastern California. Other common shrubs in this community include cattle spinach (Atriplex polycarpa), wingscale (Atriplex canescens) and honeypod mesquite (Prosopis glandulosa). Each of these species is typical of the Sonoran creosote bush scrub community.

Mesquite Hummocks

Several large, and probably very old, hummocks dominated by honeypod mesquite occur on the project site, primarily in the northeastern and eastern portion of the site. The presence of the mesquite bush indicates a relatively high water table in the region at one time. Windblown sand has been deposited at the base of these plants and, to survive, the plants continue to grow stems through and above the accumulating sand. Over hundreds, perhaps thousands, of years large mounds have been formed with the still surviving mesquite on their summits. On the project site, these hummocks may reach twenty feet
in height. Mesquite hummocks are becoming increasingly scarce in the Coachella Valley as a result of development and ground water depletion.

Disturbed/Ruderal

Approximately 30% of the project site has been disturbed by road shoulder clearing, grading for agriculture and dirt access roads, a home site, and illegal off-road-vehicle use. The vegetation of these areas are dominated by weed species that germinate and grow following the damage or removal of native vegetation. Within the project site such species include Sahara mustard (Brassica tournefortii), dicoria (Dicoria canescens), and Schismus grass (Schismus barbatus). These species are also found throughout the California deserts wherever the natural vegetation has been disturbed.

Common Wildlife

The fauna of the project site and surrounding vicinity is composed of species typical of the Colorado Desert subdivision of the Sonoran Desert. Some of the common species observed or expected to occur on the site are described below. A complete list of these species is found in Appendix E.

Amphibians and Reptiles

No amphibians or reptiles were observed on the site during the 1996 surveys. During the 1997 Impact Sciences, Inc. surveys, several reptile species were observed, including side-blotched lizard (Uta stansburiana), western whiptail (Cnemidophorus tigris), desert iguana (Dipsosaurus dorsalis), and sidewinder (Crotalus cerastes). Other reptile species expected to occur on the site include coachwhip (Masticophis flagellum) and western shovel-nosed snake (Chionactis occipitalis). The Coachella Valley fringe-toed lizard (Uma inornata) and flat-tailed horned lizard (Phrynosoma mcalli) both considered special-status species, may also potentially occur on the site and are discussed in more detail later in this section, under the heading “Special-Status Biological Resources.” Because of the lack of water resources, no amphibian species are expected to occur on the site.

Birds

A number of bird species use the habitats on and adjacent to the site. Most of these species are those that have adapted to urban settings. Frequently seen birds within the project area during the 1996 site surveys included mourning dove (Zenaida macroura), house finch (Carpodacus mexicanus), common raven (Corvus corax), white-crowned sparrow (Zonotrichia leucophrys), and red-tailed hawk (Buteo jamaicensis).
Additional species observed during the 1997 surveys included Gambel’s quail (*Callipepla gambelii*), lesser nighthawk (*Chordeiles acutipennis*), northern mockingbird (*Mimus polyglottos*), verdin (*Auriparus flaviceps*), violet-green swallow (*Tachycineta thalassina*), and black-tailed gnatcatcher (*Polioptila melanura*). No active bird nests were observed on the site during the 1997 field surveys.

Mammals

Mammal species commonly observed during site surveys included desert cottontail (*Sylvilagus auduboni*), black-tailed jackrabbit (*Lepus californicus*), California ground squirrel (*Spermophilus beecheyi*), desert kangaroo rat (*Dipodomys deserti*), and coyote (*Canis latrans*).

Sensitive Biological Resources

The following discussion describes the plant and wildlife species present or potentially occurring on the site that have been afforded special recognition by federal or state resource agencies, or recognized conservation organizations. Sensitive habitats (habitats or plant communities considered rare or unique or that support special-status species) and wildlife movement corridors are also discussed.

Special-Status Plants

Special-status plant species include those that are state- and federally-listed as Rare, Threatened, or Endangered; are federal Candidates for listing; are proposed for state or federal listing; or that are federal or state Species of Special Concern. In addition, plants included on Lists 1, 2, 3, or 4 of the CNPS inventory and those of local interest are also considered of special status.

A total of five special-status plant species were determined to potentially occur on the project site based on habitat suitability, known ranges of the species, and historical occurrences of the species in the region in similar habitat. Because of the highly disturbed nature of the site, the potential of each of these species occurring on the site is considered low. Each of these species is discussed below. None of these plant species were observed on the site during the 1996 or 1997 surveys.

Glandular ditaxis (*Ditaxis clariana*); **CNPS List 2.** This species is a rare perennial herb that blooms from December through March. It is restricted to sandy environments in the Sonoran Desert where it prefers washes and rocky slopes. This species has been found in the Coachella Valley at elevations similar to those found on the project site. Because no washes or rocky slopes are present on the site, this species is not expected to occur there.
Ribbed cryptantha (*Cryptantha costata*); **CNPS List 4.** The ribbed cryptantha is an uncommon ephemeral known to occur on sandy soils in the Coachella Valley. The project site contains marginally suitable habitat for this species. This species was not detected during the site surveys.

Flat-seeded spurge (*Chamaesyce platysperma*); **Federal Species of Concern.** The flat-seeded spurge is an extremely rare ephemeral herb known to occur on sandy soils in the Sonoran Desert. There has been at least one specimen found in the Coachella Valley. The site contains marginally suitable habitat for this species. This species was not detected during site surveys.

Slender wooly-heads (*Nemacaulis denudata* var. *gracilis*); **CNPS List 2.** This plant species occurs in coastal dunes, desert dunes, and Sonoran desert scrub habitats. This annual herb generally blooms from March to May. Although on-site habitats are considered marginally suitable for this species, it was not detected during the site surveys.

Coachella Valley milk vetch (*Astragalus lentiginosus coachellae*); **Federally Proposed Endangered.** This species is an uncommon, spring-blooming ephemeral herb that is known to occur on sandy soils in the Coachella Valley. No historical occurrences of this plant species within the USGS La Quinta quadrangle topographical map were found upon review of the CNPS database. On-site habitat is marginally suitable for this plant. This species was not detected during the 1997 site surveys.

Special-Status Wildlife

Special-status wildlife species include those that have been listed as state or federally Endangered or Threatened, have been proposed for listing as Endangered or Threatened, have been designated as candidate species for listing by federal or state resource agencies, or are considered federal Species of Concern. In addition, wildlife considered Species of Special Concern, Special Animals, and Fully Protected in the State of California are also considered of special status.

Two special-status wildlife species (loggerhead shrike and Palm Springs ground squirrel) were observed on the project site during the 1996 JWEC field surveys. Two additional species (Coachella Valley fringe-toed lizard and flat-tailed horned lizard) are known to occur in the region and may potentially occur on site. However, because of the highly disturbed nature of the site, the potential of these two lizard species occurring on the site is considered relatively low. No special-status wildlife species were observed during the 1997 Impact Sciences surveys.
Although the site is at the edge of the range for desert tortoise (*Gopherus agassizii*), a state- and federally-listed Threatened reptile species, a review of the literature and personal communications by JWEC with Robert Stebbins, Raymond Cowles, Lloyd Tevis, and Charles Bogert (vertebrate biologists who conducted field research in the Coachella Valley prior to 1970) indicate that the desert tortoise did not historically occur within the Coachella Valley. Stebbins (1986) specifically states that the desert tortoise is "absent from the Coachella Valley." Nonetheless, special attention was focused during the field surveys to locate burrows, remains, or other sign of this species on the site. No evidence of this species' presence was found and no direct observations of the species were made. Based on the results of the literature review, contact with desert tortoise experts, and the field surveys, it is concluded that this species does not currently occur within the project site or in the immediate vicinity.

Reptiles

Coachella Valley fringe-toed lizard (*Uma inornata*); **Federally Threatened, State Threatened.** This lizard species is limited to the windblown sand hummocks and deposits of the Coachella Valley. Although no individuals of the Coachella Valley fringe-toed lizard were observed during the surveys, portions of the habitat on the site, particularly the mesquite hummock areas, are considered suitable for this species. In addition, this lizard has been found in relatively disturbed areas of suitable habitat elsewhere in the Coachella Valley. The site is within an area considered as suitable habitat by the Coachella Valley Fringe-toed Lizard Habitat Conservation Plan and is also within a fee area as described in this plan.

Flat-tailed horned lizard (*Phrynosoma mcallii*); **Federally Proposed Threatened.** This lizard occurs in similar habitat as the Coachella Valley fringe-toed lizard; however, this species has a much larger range and is also found in sandy desert washes and desert flats. Although no individuals of the flat-tailed horned lizard were observed during the site surveys, and no washes occur on the site, the loose, windblown alluvium associated with the mesquite hummocks and other areas of the project site is suitable habitat for this species. However, this lizard generally prefers undisturbed habitat areas and is not usually found in disturbed habitat areas (Cornett, pers. comm.). Because these lizards are more readily observed than the fringe-toed lizard and other lizard species, it is expected that this species would have been observed on the site during the 1997 field surveys if they were present. No flat-tailed horned lizards were observed during these surveys.

Birds

Loggerhead shrike (*Lanius ludovicianus*); **California Species of Special Concern.** One observation of the loggerhead shrike was recorded during the 1996 site surveys. Although no nests were found, this species
can be expected to nest on or near the project site since it nests in similar habitat elsewhere in the Sonoran Desert and Coachella Valley (Cornett, 1987; Cameron Barrows, personal communication). This species was once common in the Coachella Valley but has become uncommon due to habitat loss.

Mammals

Palm Springs ground squirrel (*Spermophilus tereticaudus chlorus*) *California Species of Special Concern*. This species was observed once on the project site during the 1996 field surveys. Many of its burrows were also found. The Palm Springs ground squirrel is only found in the Coachella Valley and has lost much habitat due to development. No individuals of this species were observed during the 1997 field surveys.

Special-Status Vegetation Communities

Special-status vegetation communities include those habitats that support rare, threatened, or endangered plant or wildlife species; are rare or diminishing on a regional basis and are therefore of special concern to resource agencies; are of particular value to wildlife or native plant species; or come under the jurisdiction of CDFG pursuant to Section 1600 of the California Fish and Game Code, or ACOE, pursuant to Section 404 of the Clean Water Act. Some habitat types are classified as special-status by the CNDDB, which ranks the natural communities of California according to priority for preservation. Those communities that have few occurrences and small coverages are of highest priority.

Mesquite Hummocks

Mesquite hummocks, classified by CDFG as “partially stabilized desert sand fields,” are a sensitive habitat type because of their declining status due to development and groundwater depletion. This vegetation community is ranked S3.2 by CDFG, which is described as “threatened,” and is of high priority for preservation. The site-specific characteristics of this community have been described above in “Vegetation Communities.”

Wildlife Movement Corridors

Wildlife corridors link together areas of suitable wildlife habitat that are otherwise separated by rugged terrain, changes in vegetation, or by human disturbance. The fragmentation of wildlife habitat by urbanization creates isolated “islands” of wildlife habitat. Corridors mitigate the effects of this fragmentation by (1) allowing animals to move between remaining habitats which allows depleted
populations to be replenished and promotes genetic exchange; (2) providing escape routes from fire, predators, and human disturbances, thus reducing the risk that catastrophic events (such as fire or disease) will result in population or species extinction; and (3) serving as travel paths for individual animals as they wander about their home ranges in search of food, water, mates, and other needs.

As previously stated, the project site is surrounded by major roadways (Adams Street and Highway 111), scattered residential and commercial development and currently vacant land that is planned for urban development. Some very limited dispersal of plants and animals to and from the project site can be expected to occur along the site boundaries. However, continued development in surrounding areas, as planned, would make the site an ecological island in the future. Currently, the site does not occur within any regional movement corridor that links large open space areas and does not serve as a major corridor or linkage to any large open space areas.

Consultation With Resource Agencies

On April 17, 1997, representatives of the U.S. Fish and Wildlife Service, the California Department of Fish and Game, City of La Quinta staff, the Impact Sciences Project Manager and a representative of the project applicant met at the offices of the Coachella Valley Association of Governments, in Palm Desert. The purpose of this meeting was to discuss the biological character of the project site and to discuss agency concerns regarding sensitive plants or wildlife species and potential project impacts on important biological resources. Biological surveys, analyses, findings, conclusions and recommended mitigation measures prepared for this EIR were reviewed. No specific concerns regarding this project's potential impacts on biological resources were expressed by representatives of either agency, and no recommendations for further study were made.

IMPACT ANALYSIS

Evaluation of Impacts

The discussion of direct impacts that follows focuses on the effects of implementation of the proposed project on plant and wildlife habitat, wildlife movement, and on both common and special-status resources. Because most biological resources, particularly plants and wildlife, are dependent upon the condition, extent, and character of specific ecosystems and habitat types, impacts on these resources are generally discussed in terms of the effect of project-related activities on natural habitat areas, i.e., on vegetation communities. However, direct impacts with respect to specific plant and wildlife resources (e.g., active nests, dens, and individual plants and animals) are also evaluated and discussed when
impacts on these resources, in and of themselves, could be considered significant or conflict with certain state and federal laws or regulations.
The level of significance of potential impacts on biological resources is determined by an evaluation of significance criteria (described below) with respect to the overall biological value of a habitat area and/or a specific resource. The relative value of each of the vegetation communities present on site is measured by such factors as disturbance history, biological diversity, its importance to particular plant and wildlife species, its uniqueness or sensitivity status, the surrounding environment, and the presence of special-status resources.

In addition to the loss of habitat that supports plant and wildlife species, project impacts can include the direct loss or “take” of individual plants and animals, nests, or eggs. These impacts may also be subjected to regulatory action under state and federal endangered species acts, the Migratory Bird Treaty Act, and the California Fish and Game Code.

Impact Significance Criteria

Appendix G of the CEQA Guidelines states that a project will normally have a significant impact on biological resources if it will:

- substantially affect a rare or endangered species of plant or animal or the habitat of such species;
- interfere substantially with the movement of any resident or migratory fish or wildlife species;
- substantially diminish habitat for fish, wildlife, or plants;
- conflict with adopted environmental plans and goals in the community where it is located; or
- involve the use, production or disposal of materials which pose a hazard to animal or plant populations in the area affected.

Section 15065(a) of the CEQA Guidelines also states that a project may have a significant effect on the environment when the project has the potential to:

- substantially degrade the quality of the environment,
- substantially reduce the habitat of a fish or wildlife species,
- cause a fish or wildlife population to drop below self-sustaining levels,
- threaten to eliminate a plant or animal community, or
- reduce the number or restrict the range of a rare or endangered plant or animal.

An evaluation of whether an impact on biological resources would be significant must consider both the resource itself and how that resource fits into a regional or local context. Significant impacts would be those that would diminish, or result in the loss of, an important biological resource, or those that would
obviously conflict with local, state, or federal resource conservation plans, goals, or regulations. Impacts are sometimes locally important but not significant according to CEQA, because although they would result in an adverse alteration of existing conditions, they would not substantially diminish, or result in the permanent loss of, an important resource on a population-wide, or region-wide, basis.

For the purposes of this analysis, "rare or endangered," as defined by CEQA, refers to the following: any plant or animal species listed by CDFG or USFWS as a Threatened or Endangered species, proposed for listing as Threatened or Endangered, or considered as a candidate for listing as Threatened or Endangered; those species listed by the USFWS as a federal Species of Concern; those species considered by CDFG as a state Species of Special Concern or as a Fully Protected species; any plants listed by the CNPS as a List 1 or List 2 species; or any species otherwise considered rare or endangered as defined by Section 15380 of the CEQA Guidelines.

Direct Impacts

Vegetation Communities

Sonoran Creosote Bush Scrub

The proposed project is expected to eliminate approximately 87 acres of Sonoran creosote bush scrub habitat on the project site. However, this habitat is widespread in the Southwest and large amounts of high quality and contiguous Sonoran creosote bush scrub exists in the immediate region. The loss of 87 acres of this habitat, from a botanical standpoint, is not considered a substantial loss of this community. Therefore, no significant impacts on this community will occur.

Disturbed/Ruderal

Because of the already disturbed nature of this habitat and its low value to plant and wildlife species, the loss of this habitat on the site is not considered a significant impact.

Mesquite Hummock

Three mesquite hummocks, representing approximately 8-10 acres, will be lost as a result of this project. Although this habitat is considered rare and sensitive by the CDFG, these hummocks have already been severely impacted as a result of their isolation due to grading and development on surrounding properties, illegal dumping, and off-road-vehicle use on the site and, in the case of one hummock,
construction of a house on its summit. In addition, higher quality and more contiguous mesquite hummock habitat is located to the south and west of the site adjacent to the Santa Rosa Mountains and to the south in the City of La Quinta. Other areas of this habitat are located elsewhere in the Coachella Valley and protected in the Coachella Valley Preserve. Because of the relatively poor quality and low biological value of this habitat on the site, the isolated and fragmented nature of the site, and the existence of larger and higher quality habitat elsewhere in the region, the loss of the mesquite hummock habitat on this site is not considered a significant impact.

Common Wildlife

In addition to the loss of wildlife habitat, construction activity and operation of the proposed project will directly disturb wildlife on, and immediately adjacent to, the project site. Most species are expected to be displaced to nearby or adjacent areas of similar habitat to the north, east and south, provided it is available at the onset of construction activity. However, wildlife that emigrate from the site are vulnerable to mortality by predation and unsuccessful competition for food and territory. Within the development envelope, species of low mobility (particularly burrowing mammals and reptiles) would be lost during site preparation.

Replacement of existing vegetation with structures and ornamental landscaping would eliminate natural communities on developed portions of the site and result in a reduction of native wildlife species diversity. A number of animal species would be replaced with a fauna composed of species more tolerant of, or even dependent upon, urban settings.

Much of the development envelope focuses on habitat disturbed by past or current land uses and urban associated activities. In addition, most of the animal species that would be displaced or inadvertently destroyed by construction activities and the introduction of less-desirable vegetation are relatively common in the area, have large ranges, and exist in similar habitats throughout the Coachella Valley. Therefore, project implementation is not considered a substantial effect on resident wildlife species and is not expected to cause an existing wildlife population on or adjacent to the project site to drop below self-sustaining levels. Therefore, no significant impacts on common wildlife species are expected to occur.

Please note that many kinds of common bird nests with eggs or young are protected under the Migratory Bird Treaty Act and the California Fish and Game Code. Examples of locally common birds protected by this law that could potentially nest on site include the greater road runner, rock dove, northern mockingbird, black-tailed gnatcatcher, and verdin. The loss of an active nest as a result of construction or other site-preparation activities would be considered a violation of these laws.
Special-Status Resources

Special-Status Habitat Communities

The loss of mesquite hummock habitat has already is discussed above. The loss of this habitat is not considered a significant impact.

Special-Status Plant Species

As previously stated, habitat on the site is marginally suitable to support five special-status plant species (glandular ditaxis, ribbed cryptantha, flat-seed spurge, slender wooly-heads and Coachella Valley milk vetch). However, none of these plant species were observed on the site during the focused surveys conducted in 1996 or 1997. Because of the highly disturbed and isolated nature of the site, and because no individuals of these plants were observed on the site during focused surveys for these species, none of these species are expected to occur on the site in the near future. Therefore, no impacts on special-status plant species are expected to occur as a result of project implementation.

Special-Status Wildlife

As discussed earlier in this report, the biological survey determined that the project site constituted suitable habitat for the Coachella Valley fringe-toed lizard and flat-tailed horned lizard. Implementation of the proposed project will eliminate essentially all habitat for these species on the site and would likely destroy any lizards inhabiting the site prior to grading and construction-related activities. In addition, the project site is within the habitat fee area pursuant to the Coachella Valley Fringe-toed Lizard Habitat Conservation Plan. Because of the high sensitivity status of the fringe-toed lizard (state- and federally-listed Threatened) and the flat-tailed horned lizard (federally proposed Threatened) the loss of this habitat and any of these lizards would reduce the number or restrict the range of these animals and would be considered a substantial impact on a rare or endangered species. This would be a significant impact of the project.

Both the loggerhead shrike and Palm Springs ground squirrel were observed on or adjacent to the site. Both of these species are known to occur in similar habitats throughout the region and are only expected to occur on the site in very low numbers. Because of the relatively low sensitivity status of these species, and because only low numbers of these animals would be potentially affected by the project, the loss of suitable habitat for these species will not substantially reduce the number or restrict the range of these animals. Therefore, no significant impacts on these species will occur.
Bird nests with eggs or young are protected under the Migratory Bird Treaty Act and the California Fish and Game Code. The loggerhead shrike, which potentially occurs on the site, is protected under these laws. The loss of an active nest of this species as a result of construction or other site-preparation activities would be considered a violation of these laws.

Wildlife Movement Corridors

As previously discussed, the project site is largely surrounded by existing or planned urban development. In addition, the site does not occur within any regional movement corridor that links large open space areas and does not serve as a major corridor or linkage to any large open space areas. Therefore, implementation of the proposed project will not substantially interfere with the movement of any resident or migratory animal species and no significant impacts on wildlife movement will occur.

Indirect Impacts

Indirect impacts on biological resources would occur to those habitat areas surrounding the development envelope, as well as to remaining habitat areas within the proposed development area, after the completion of the proposed project. It is expected that implementation of the proposed project would result in indirect impacts to biological resources in the following ways:

- an increased human and domestic animal presence in the area;
- increase in populations of non-native wildlife species; and
- increased light and glare.

Indirect impacts associated with the proposed project are not quantifiable but are reasonably foreseeable. As such, the discussion that follows provides a common sense identification of the types of secondary impacts and their relative magnitude such that decision makers and the general public are aware of the indirect impact potential associated with implementation of the proposed project.

Increased Human Presence

Implementation of the proposed project would increase human presence in the area, with a corresponding increase in noise levels, traffic, refuse, and air pollutants. These effects could increase the opportunity for vehicle/wildlife conflicts and possibly road kills. In addition, some persons who visit the project site may
wander onto adjacent open land to the east and south, thus increasing the possibility of disturbance to plants or wildlife in those open areas.

Because of the heavily disturbed, isolated, and fragmented nature of the project site and surrounding open space areas, the increased potential for vehicle/wildlife conflicts and human presence in adjoining habitat areas, though adverse, would not substantially affect plant and wildlife habitat or species in these areas. Therefore, these impacts are not considered significant.

Increase in Populations of Non-Native Plants and Wildlife

Grading and site development activities would remove all existing vegetation on-site and would displace many of the wildlife species that occur on site. After project completion, the site will include a number of landscaped areas that tend to attract a variety of non-native wildlife that are more adapted to urban environments. These urban adapted species are expected to displace native species adjacent to or near the project site because of their ability to compete more effectively for nest sites and food. While animals typical of an urban environment already occur in the region, development of the proposed project would further exacerbate an already adverse condition.

Given the wide presence of non-native species in the region, it is unknown to what degree non-native species would continue to displace native plant and wildlife species remaining near the project site. Therefore, the potential impacts on these resources are considered adverse, but not significant, impacts.

Increased Noise, Light and Glare

Project operation would increase the number of nighttime light sources on the site and would substantially increase average daily and evening traffic volumes. Traffic noise and noise from other human activities, as well as nighttime illumination are known to adversely impact animals in natural areas.

Nighttime light and noise can disturb nesting and foraging behavior and can potentially alter breeding cycles and nesting behavior. If uncontrolled, on-site lighting that is proximal to remaining natural areas immediately surrounding the project site, could adversely impact the animal species composition that occurs in these areas. The proposed specific plan includes several lighting controls to reduce the intensity of lighting on the proposed auto dealership lots. In addition, the project must comply with the provisions of the City of La Quinta’s Municipal Code regarding illumination controls that will prevent off-site glare. These proposed and required lighting controls would avoid significant light/glare impacts to wildlife near the project site.
Because of the heavily disturbed, isolated, and fragmented nature of the project site and surrounding open space areas, the potential disruption to breeding and nesting cycles and behavior of wildlife species in adjacent areas as a result of increased traffic noise and increased noise at the project site, though adverse, would not substantially affect wildlife species. Therefore, these impacts are not considered significant.

Cumulative Impacts

Development projects are currently underway or are planned in various locations near and adjacent to the project site. Development in the region has been cumulatively reducing the amount of open area and sensitive habitats, and has been constricting wildlife movement. Such conversions of open space have been and will continue to permanently lead to the shrinkage of the amount of land available for natural habitats and the flora and fauna that inhabit them. In some cases, certain natural habitats and plant and wildlife species occur in relative abundance despite the amount of development that is on the horizon; however, others do not. In these latter cases, incremental development has been contributing to habitat loss. When viewed individually, it may be possible for each of the projects to mitigate potential project-specific significant impacts through the implementation of habitat replacement programs and the requirements of the regulatory processes to which each of the projects may be subject. However, on a cumulative basis, an overall net loss of natural habitat areas may still occur. The significance of this loss typically depends on the biological quality and value of a particular site to common and special-status resources. With respect to this project, the habitats on the site have been heavily disturbed and degraded by human-associated activities. In addition, the site is essentially surrounded by proposed and current development and roadways. Because of the relatively low biological value of the site for common and special-status plant and wildlife species, the loss of the on-site habitats as a result of project implementation is not considered a substantial loss of wildlife habitat on a cumulative basis. Therefore, this loss is not considered a significant cumulative impact.

Although the project site has been heavily disturbed and is relatively fragmented and isolated, it is considered suitable habitat for one state- and federally-listed animal species (Coachella Valley fringe-toed lizard) and two federally proposed for listing species (flat-tailed horned lizard and the Coachella Valley milk vetch). Because no individuals of the Coachella Valley milk vetch were found on the site during the 1996 or 1997 field surveys and because no historical occurrences of this species exist within the immediate region, this plant is not expected to occur on the site. However, the two lizard species are known to occur in the region and the project site provides some suitable habitat for these species. In addition, no focused surveys have been conducted for these species at a time considered optimal for their observation. Therefore, these lizard species could potentially occur on the site. The loss of available suitable habitat for
these species on this site would contribute to a cumulative net loss of habitat for these species in the region. Because of the rarity of these two species, this loss would be considered a significant cumulative impact.
MITIGATION MEASURES

The following describes measures proposed to avoid, minimize, or reduce potentially significant impacts on biological resources. These measures, if successfully implemented, would reduce the degree of impacts attributable to the proposed project to a level that is less than significant. In addition, these measures will minimize the potential to violate state and federal laws and regulations protecting certain plant and animal species.

BIO1. Common and Special-Status Bird Nests. If project site grading and/or construction would occur during the nesting/breeding season (typically February through July) of native bird species potentially nesting on the site, then the following measure shall be implemented.

Prior to construction or site preparation activities, a field survey shall be conducted by a qualified biologist to determine if active nests of special-status birds (i.e., loggerhead shrike) or common bird species protected by the Migratory Bird Treaty Act and/or the California Fish and Game Code, are present in the construction zone or within 50 feet of the construction zone. If active nests are found, a minimum 50-foot (this distance may be greater depending on the bird species and construction activity, as determined by the biologist) fence barrier shall be erected around the nest site. No construction activities shall be permitted within this nest zone until the young birds have fledged, as determined by the project biologist.

BIO2. Coachella Valley Fringe-Toed Lizard and Flat-tailed Horned Lizard. The project applicant shall pay $600 per acre developed to the City of La Quinta as part of the Coachella Valley fringe-toed lizard mitigation plan. This mitigation structure has been established by the USFWS and CDFG. The fee is applied when lands within known or historical fringe-toed lizard habitat are developed. The project lies within the fee area. The mitigation fee is used to purchase fringe-toed lizard habitat in special preserves, such as the Coachella Valley Preserve area, for the purpose of maintaining suitable habitat for the fringe-toed lizard. In addition, even though there is only a low potential for the flat-tailed horned lizard to occur on the site due to the disturbed nature of the habitat, the fringe-toed lizard habitat on the site is also suitable for the horned lizard. Measures such as the payment of the mitigation fee that are enacted as part of the Coachella Valley Fringe-toed Lizard Habitat Conservation Plan to preserve and enhance fringe-toed lizard habitat will also benefit flat-tailed horned lizard. Therefore, the mitigation fee paid for the loss of fringe-toed lizard habitat on the site will also mitigate the loss of this same habitat for flat-tailed horned lizard.
UNAVOIDABLE SIGNIFICANT IMPACTS

Implementation of the measures described above will reduce the project's direct impact on common and special-status bird nests, and on Coachella Valley fringe-toed lizard and flat-tailed horned lizard habitat to a less than significant level. Implementation of these measures will also mitigate the cumulative loss of Coachella Valley fringe-toed lizard and flat-tailed horned lizard habitat to a less than significant level. Therefore, no unavoidable significant impacts on biological resources will remain.
INTRODUCTION

This section is derived from a traffic impact analysis (TIA) prepared for the proposed project by Robert Kahn, John Kain & Associates, Inc. (RKJK) in April, 1997. The TIA is presented in its entirety in Appendix F of this EIR.

The objectives for the traffic study, in general, were to document the existing traffic conditions in the vicinity of the project site, evaluate traffic condition for the year 2000 at the completion of the auto mall portion of the proposed project, evaluate the traffic conditions for the year 2005 with full occupancy of the project, and determine on- and off-site improvements and system management actions needed to achieve City of La Quinta level of service requirements. The analysis was based on morning and afternoon peak hour traffic volumes on the intersections in the project vicinity.

A preliminary evaluation of likely trip distribution patterns and estimated project trip generation was conducted to determine the range of intersections that would be most affected by project traffic. Based on that evaluation, the traffic study addressed the following intersections:

- Washington Street (north-south) at:
 - Fred Waring Drive
 - Miles Avenue
 - State Route 111 (SR-111)
 - 47th Avenue
 - 48th Avenue

- Adams Street (north-south) at:
 - SR-111
 - 47th Avenue
 - 48th Avenue

- Project Entrance (north-south) at:
 - SR-111

- Dune Palms Road (north-south) at:
 - SR-111
 - 48th Avenue

- Jefferson Street (north-south) at:
 - Fred Waring Drive
 - Miles Avenue
 - SR-111
 - 48th Avenue
PLANS AND POLICIES FOR TRANSPORTATION

Existing transportation plans and policies which pertain to the assessment of this project’s traffic impacts include: (1) the Riverside County Congestion Management Program, (2) the City of La Quinta General Plan, and (3) the City of La Quinta Transportation Demand Management (TDM) Ordinance. Each of these are briefly described below.

Congestion Management Program

The Congestion Management Program (CMP) was enacted by the State Legislature to address traffic congestion in California’s urbanized counties. The Legislature noted that the existing transportation system relies upon an overcrowded street and highway system that impacts the economic vitality of the State and diminishes the quality of life in many communities. The current CMP for Riverside County was adopted in 1995, and it is required by law to be updated biennially.

The CMP was created for the purposes of linking land use, transportation and air quality decisions; developing a partnership among transportation decision-makers on devising appropriate transportation solutions that include all modes of travel; and proposing transportation projects eligible to compete for State gas tax funds.

The requirements for the CMP became effective with voter approval of Proposition 111 in June, 1990. Proposition 111 provided for a nine cent increase in the State gas tax over a five year period to generate revenues to fund transportation investment Statewide. In order to receive these funds, jurisdictions must comply with CMP requirements.

By, statute, the CMP has five elements: 1) a system of highways and roadways with minimum level of service performance standards designated for highway segments and key roadway intersections on the system; 2) transit standards for frequency and routing of transit service and coordination between transit operators; 3) a trip reduction and travel demand management element promoting alternative transportation methods; 4) a land use impact analysis program; and 5) a seven-year capital improvement program of projects.

Local jurisdictions are responsible for assessing the impacts of new development on the CMP highway system when preparing project EIRs and for selecting appropriate measures to mitigate such impacts from a “toolbox” of strategies. To be classified as a CMP roadway, the roadway must meet the following criteria:
5.5 Transportation and Circulation

- Be an existing State highway (freeways and arterials); or

- Be a principal arterial, defined as:
 - routes that complete gaps in the State highway system,
 - routes providing connections with the CMP systems in adjacent counties, or
 - routes along major inter-jurisdictional travel corridors, providing primary, high volume or multi-modal transportation

State Route 111 is a CMP roadway. Therefore, the proposed project’s impacts to SR-111 are subject to the standards and consistency requirements of the CMP. The Riverside County CMP definition of deficiency is based on maintaining a Level of Service (LOS) standard of “E” or better, except where an existing LOS “F” condition is identified in the CMP. None of the other roadways within the traffic study are part of the CMP system.

City of La Quinta General Plan

The La Quinta General Plan states that peak hour intersection operations of LOS “D” or better are generally acceptable. Therefore, for the purpose of this analysis, any intersection operating at LOS “E” or “F” will be considered deficient.

In order to accommodate future growth and provide acceptable levels of service, the City has planned extensive improvements to the network, to be completed over the long-term, as growth occurs. The City’s planned improvements are discussed in detail in the Circulation Element of the La Quinta General Plan.

City of La Quinta TDM Ordinance

In response to the requirements of the CMP, the City adopted a Transportation Demand Management (TDM) Ordinance (Chapter 9.180 which applies to any new development project or change of use, and which is estimated to employ a total of 100 or more persons. These regulations are intended to reduce air pollution, traffic congestion and energy consumption attributable to vehicle trips and vehicle miles traveled. Projects subject to the ordinance are required to submit a TDM plan which is reasonably calculated to achieve an average vehicle occupancy rate of 1.3 persons per vehicle for employees. With a potential employment of several hundred, the proposed project will be required to implement one or more TDM plans, as approved by the City.

1 BRW, Inc., La Quinta General Plan (La Quinta, California: City of La Quinta, October 6, 1992), p. 3-6.
METHODOLOGY

The TIA prepared for this project employs analytical methods specified in the 1994 Highway Capacity Manual (HCM) (Transportation Research Board Special Report 209). This is a widely used reference for traffic impact studies throughout California and in other parts of the country. The 1994 HCM defines level of service ("LOS") as a qualitative measure which describes operational conditions within a traffic stream, generally in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety.

The criteria used to evaluate LOS conditions vary based on the type of roadway and whether the traffic flow is considered interrupted or uninterrupted. The definitions of level of service for interrupted traffic flow (flow restrained by the existence of traffic signals and other traffic control devices) differ slightly depending on the type of traffic control. The level of service is typically dependent on the quality of traffic flow at the intersections along a roadway. The 1994 HCM methodology expresses the level of service at an intersection in terms of delay time for the various intersection approaches. The HCM uses different procedures depending on the type of intersection control. The levels of service determined in this study are determined using the HCM methodology.

For signalized intersections, average delay per vehicle is used to determine level of service. Levels of service at signalized study intersections were evaluated using the HCM intersection analysis program.

Study area intersections which are stop sign controlled with stop control on the minor street only were analyzed using the unsignalized intersection methodology of the HCM. For these intersections, the calculation of level of service is dependent on the occurrence of gaps occurring in the traffic flow of the main street. Using data collected describing the intersection configuration and traffic volumes at these locations, the level of service at each of the study area intersections was calculated.

Because some intersections are all-way stop-controlled, the ability of vehicles to enter the intersection is not controlled by the occurrence of gaps in the flow of the main street. All way stop controlled (AWSC) intersections have been evaluated using the HCM methodology for this type of multi-way, stop-controlled intersection configuration. The level of service criteria for this type of intersection analysis are also based on average delay per vehicle.

The definitions of level of service for uninterrupted flow (flow unrestrained by the existence of traffic control devices) are:
• LOS “A” represents free flow. Individual users are virtually unaffected by the presence of others in the traffic stream.

• LOS “B” is in the range of stable flow, but the presence of other users in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver.

• LOS “C” is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual users becomes significantly affected by interactions with others in the traffic stream.

• LOS “D” represents high-density but stable flow. Speed and freedom to maneuver are severely restricted, and the driver experiences a generally poor level of comfort and convenience.

• LOS “E” represents operating conditions at or near the capacity level. All speeds are reduced to a low, but relatively uniform value. Small increases in flow will cause breakdowns in traffic movement.

• LOS “F” is used to define forced or breakdown flow. This condition exists wherever the amount of traffic approaching a point exceeds the amount which can traverse the point. Queues form behind such locations.

The level of services are defined for the various analysis methodologies in Table 12.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Average Stopped Delay per Vehicle (seconds)</th>
<th>Average Total Delay per Vehicle (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signalized</td>
<td>Unsignalized</td>
</tr>
<tr>
<td>A</td>
<td>0 to 5.00</td>
<td>0 to 5.00</td>
</tr>
<tr>
<td>B</td>
<td>5.01 to 15.00</td>
<td>5.01 to 10.00</td>
</tr>
<tr>
<td>C</td>
<td>15.01 to 25.00</td>
<td>10.01 to 20.00</td>
</tr>
<tr>
<td>D</td>
<td>25.01 to 40.00</td>
<td>20.01 to 30.00</td>
</tr>
<tr>
<td>E</td>
<td>40.01 to 60.00</td>
<td>30.01 to 45.00</td>
</tr>
<tr>
<td>F</td>
<td>60.01 and up</td>
<td>45.01 and up</td>
</tr>
</tbody>
</table>

The LOS analysis for signalized intersections was performed using optimized signal timing. This analysis has included an assumed lost time of three seconds per phase in accordance with 1994 HCM recommended default values. Signal timing optimization has considered pedestrian safety and signal coordination requirements. Appropriate time for pedestrian crossings have also been considered in the signalized intersection analysis. Saturation flow rates of 1,900 vehicles per hour of green (vphg) were assumed for all capacity analysis.

ENVIRONMENTAL SETTING

Existing Roadway Network

The existing roadway network within the City of La Quinta is in the early stages of development and consists of a modified grid system of two and four lane roadways with primarily a north-south orientation. This network consists of State Route 111, which runs east-west and divides the northern and southern portions of La Quinta, and major, primary, and secondary arterial streets as well as a system of local and collector streets. The existing roadway system studied in the EIR is illustrated in Figure 12. Also shown in this figure are the existing number of through lanes and the existing intersection controls.

Existing Traffic Volumes and Conditions

Existing average daily traffic volumes (ADT) on arterial highways throughout the study area are shown in Figure 13. Existing ADTs are based upon traffic data collected by the City of La Quinta, the 1995 Traffic Volumes on California State Highways by Caltrans and factored up from peak hour counts conducted by RKJK, using the following formula for each intersection leg:

\[\text{PM Peak Hour (Approach Volume + Exit Volume) x 10 = Leg Volume} \]

Prior to opening of the project, the City plans to extend Dune Palms Road between SR-111 and the Whitewater River. Construction of 48th Street between Adams Street and Jefferson Street has been scheduled by the City of La Quinta for the near future, and will be completed in 1997. The redistributed existing ADTs consistent with these improvements are also shown in Figure 13.

Existing peak hour traffic operations have been evaluated for study area intersections. The results of this analysis are summarized in Table 13. Existing intersection level of service calculations are based upon manual A.M. and P.M. peak hour turning movement counts made for RKJK in January, 1997 (see Exhibits G and H in Appendix F). Prior to opening of the project, Dune Palms Road is to be extended.
FIGURE 12. AFFECTED ROADWAY NETWORK.
FIGURE 13. EXISTING AVERAGE DAILY TRAFFIC.
between SR-111 and the Whitewater River and 48th Avenue is to be extended between Adams Street and Jefferson Street, according to City of La Quinta staff. Redistributed existing A.M. and P.M. peak hour turning movement volumes are shown in Exhibits G and H of Appendix F, respectively.

Table 13
Intersection Analysis for Existing Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Adams Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dune Palms Road (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Jefferson Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 13, existing study area intersections operate at Level of Service “D” or better during the peak hours, except for the intersection of Washington Street/48th Avenue which operates at Level of Service “F” during the peak hours without a traffic signal. For these existing conditions, traffic signals appear to currently be warranted at the following study area intersections (see Appendix “C” in the TIA):

- Washington Street at 48th Avenue
- Jefferson Street at Miles Avenue
- Jefferson Street at 48th Avenue

Traffic signals are programmed by the City of La Quinta for installation in 1997 at the intersections of Washington Street/48th Avenue, and Jefferson Street/48th Avenue, to correct the existing level of service problems at those locations. Additional signals are also programmed for installation in 1997 at the intersections of Adams Street/48th Avenue, Dune Palms Road/48th Avenue and Highway 111/Dune Palms Road.
5.5 Transportation and Circulation

Existing Transit Service

Transit service (bus) is provided in the City of La Quinta by the Sunline Transit Agency. There are currently transit routes on SR-111 and Washington Street in the study area.

Future Baseline Traffic Conditions

Areawide Growth
To account for areawide growth on study area roadways, future traffic volumes were forecast assuming a 4.1 percent annual growth rate applied to existing traffic volumes. This is the rate of growth along SR 111, between 1986 and 1995, as measured by Caltrans. The rate of growth along this regional arterial is considered an excellent indicator of growth rates throughout the arterial system surrounding the project site.

Year 2000 Traffic Forecasts
Figure 14 shows the ADTs which can be expected for Year 2000 traffic conditions without the project. Year 2000 intersection levels of service for the existing network without the proposed project are shown in Table 14, based on the existing geometrics at the study area intersections without programmed or expected improvements. As shown, the following three intersections are projected to be operating at deficient levels of service, without project traffic:

- Washington Street at SR-111 (LOS F in the PM peak period)
- Washington Street at 48th Avenue (LOS F in AM and PM peak periods)
- Jefferson Street at Miles Avenue (LOS F in PM peak period)

Year 2005 Traffic Forecasts
Figure 15 shows the ADTs which can be expected for Year 2005 traffic conditions without the project. Year 2005 intersection levels of service for the existing network without the proposed project are shown in Table 15 without programmed or expected roadway improvements. As shown, five study area intersections are projected to operate at deficient levels of service, without project traffic:

- Washington Street at Fred Waring Drive (LOS F in AM and PM peak periods)
- Washington Street at SR-111 (LOS F in AM and PM peak periods)
- Washington Street at 48th Avenue (LOS F in AM and PM peak periods)
- Dune Palms Road at SR-111 (LOS F in PM peak period)
- Jefferson Street at Miles Avenue (LOS F in AM and PM peak periods)
FIGURE 14. YEAR 2000 AVERAGE DAILY TRAFFIC WITHOUT PROJECT.
FIGURE 15 YEAR 2005 AVERAGE DAILY TRAFFIC WITHOUT PROJECT.
Table 14
Intersection Analysis for Year 2000 Without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Level of Service (LOS)</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>D</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Adams Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Dune Palms Road (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Jefferson Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>D</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Table 15
Intersection Analysis for Year 2005 Without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Level of Service (LOS)</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Adams Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Dune Palms Road (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>A</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Jefferson Street (NS) at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

IMPACT ANALYSIS

Impact Significance Criteria

The CEQA Guidelines state that a project will normally have a significant effect on the transportation and circulation environment if it will cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system. However, this guideline does not define what a substantial increase in traffic is.

According to the La Quinta General Plan, peak hour intersection operations of LOS “D” or better are generally acceptable. Therefore, project-related or cumulative traffic impacts which increase congestion at any intersection to LOS “E” or “F,” or which add traffic to locations projected to operate at LOS E or F, will be considered significant. The CMP definition of deficiency is based on maintaining a level of service standard of LOS “E” or better, except where an existing LOS “F” condition is identified in the CMP document. Since this EIR section focuses on attainment of Level of Service “D” conditions or better, the improvement recommendations in this section meet or exceed CMP requirements.

Project Impacts

Trip Generation

Trip generation represents the amount of traffic which is attracted and produced by a development. The trip generation for the proposed project is based upon the specific land uses which have been planned for the development. Proposed project Phases 1 and 2 are anticipated to be completed by the end of the Year 2000, with 275,000 square feet of auto dealership facilities. Full project buildout is currently anticipated to occur by the Year 2005, with an approximately 400,000 square feet mixed-use regional commercial center added to the 275,000 square feet of auto dealership uses.

Trip generation estimates for the project are shown in Table 16. The trip generation rates are based upon data for similar land uses, collected by the Institute of Transportation Engineers (ITE). As shown, the proposed Year 2000 project development is projected to generate a total of approximately 13,180 trip-ends per day with 540 vehicles per hour during the AM peak hour and 720 vehicles per hour during the P.M. peak hour. The proposed Year 2005 project development is projected to generate a total of approximately 29,990 trip-ends per day with 905 vehicles per hour during the A.M. peak hour and 2,310 vehicles per hour during the P.M. peak hour.

It should be noted that for the proposed project land uses, a portion of the traffic would come from pass-by trips from adjacent roadways, trips which are currently on the roadway system. According to ITE
studies of pass-by trips, with the traffic volumes that occur along the adjacent segment of SR-111 and the type and size of mixed-use commercial center proposed, approximately 33 percent of all project trip ends could be considered pass-by trips. For this EIR, however, a more conservative assumption of 25 percent pass-by trips was made. In addition, no allowance for potential private vehicle trip-reducing effects of public transit was made in the project trip generation estimates.

Table 16
Year 2005 Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Quantity</th>
<th>Units²</th>
<th>AM In</th>
<th>AM Out</th>
<th>PM In</th>
<th>PM Out</th>
<th>Daily³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Retail</td>
<td>400.0</td>
<td>TSF</td>
<td>230</td>
<td>135</td>
<td>795</td>
<td>795</td>
<td>16,810</td>
</tr>
<tr>
<td>Auto Dealership</td>
<td>275.0</td>
<td>TSF</td>
<td>380</td>
<td>160</td>
<td>295</td>
<td>425</td>
<td>13,180</td>
</tr>
<tr>
<td>Subtotal</td>
<td>675.0</td>
<td>TSF</td>
<td>610</td>
<td>295</td>
<td>1,090</td>
<td>1,220</td>
<td>29,990</td>
</tr>
<tr>
<td>Pass-By/Diverted Trips¹ (25%)</td>
<td>-155</td>
<td>-75</td>
<td>-275</td>
<td>-305</td>
<td>-7,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>455</td>
<td>220</td>
<td>815</td>
<td>915</td>
<td>22,490</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ All peak hour trips rounded to the nearest 5.
² TSF = thousand square feet.
³ All daily trips rounded to the nearest 10.
4 A portion of the project site traffic would come from pass-by or diverted trips from adjacent roadways, trips which are currently on the roadway system (see Appendix D of The Centre at La Quinta Traffic Impact Analysis).

Trip Distribution

Trip distribution represents the directional orientation of traffic to and from the project site. Trip distribution is heavily influenced by the geographical location of the site, the location of residential, employment and recreational opportunities and the proximity to the regional freeway system. The directional orientation of project-related traffic was determined by evaluating existing and proposed land uses and highways within the community and existing traffic volumes.

The trip distributions for this study have been based upon near-term conditions, including those highway facilities which are either in place or will be contemplated over the next eight (8) years, which represents the buildout time-frame for the project. The trip distribution patterns for the Year 2000 and Year 2005 project are graphically depicted in Figures 16 and 17, respectively.

Capacity, Level of Service, and Improvements

To assess Year 2000 and Year 2005 traffic conditions, project traffic is combined with the existing traffic and areawide growth traffic volumes discussed previously. Figure 18 shows the ADTs which could be
FIGURE 16 YEAR 2000 PROJECT TRIP DISTRIBUTION.
FIGURE 17. YEAR 2005 PROJECT TRIP DISTRIBUTION.
expected for year 2000 traffic condition with the project and Figure 19 shows the total ADT volumes for year 2005.

Year 2000 Forecast, With Project Traffic

Year 2000 intersection levels of service for the existing network with the proposed project are shown in Table 17. This table shows HCM calculations based on the existing geometrics at the study area intersections without any programmed or expected improvements. Although the project entrance at SR-111 is forecast to operate at LOS B during both peak periods, based on a signal warrant analysis (see Appendix C in TIA), a traffic signal is warranted there. In addition, four other intersections are projected to be operating at deficient levels of service:

- Washington Street at SR 111 (LOS E in AM peak period, LOS F in PM peak period)
- Washington Street at 48th Avenue (LOS F in AM and PM peak periods)
- Dune Palms Road at SR 111 (LOS F in PM peak period)
- Jefferson Street at Miles Avenue (LOS F in AM and PM)

Table 17

Intersection Analysis for Year 2000 With Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Adams Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>• 47th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Project Entrance (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Dune Palms Road (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Jefferson Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fred Waring Drive (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>• Miles Avenue (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>• SR-111 (EW)</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>• 48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

FIGURE 18. YEAR 2000 AVERAGE DAILY TRAFFIC WITH PROJECT.
FIGURE 19. YEAR 2005 AVERAGE DAILY TRAFFIC WITH PROJECT.
It should be noted that three of these intersections (Washington St./SR-111, Washington St./48th Ave. and Jefferson St./Miles Ave.) were projected to operate at deficient levels of service before project traffic is added, as previously discussed. Project traffic would, therefore, worsen an already significantly congested condition at these locations. Project traffic impacts at the proposed project entrance/SR-111 and the four intersections listed above would be significant.

Year 2005 Forecast, With Project

Year 2005 intersection levels of service for the existing network with the proposed project are shown in Table 18. This table shows HCM calculations based on the existing geometrics at the study area intersections without programmed or expected improvements. Although the project entrance at Adams Street is forecast to operate at LOS A during both peak periods, based on a signal warrant analysis (see Appendix C in TIA), a traffic signal is warranted there. In addition, five intersections are projected to operate at deficient levels of service:

- Washington Street at Fred Waring Drive (LOS F in AM and PM peak periods)
- Washington Street at SR-111 (LOS F in AM and PM peak periods)
- Washington Street at 48th Avenue (LOS F in AM and PM peak periods)
- Dune Palms Road at SR-111 (LOS F in PM peak period)
- Jefferson Street at Miles Avenue (LOS F in AM and PM peak periods)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred Waring Drive (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Miles Avenue (EW)</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>SR-111 (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>47th Avenue (EW)</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>48th Avenue (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Adams Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-111 (EW)</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>47th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Project Entrance (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-111 (EW)</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Dune Palms Road (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-111 (EW)</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Jefferson Street (NS) at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred Waring Drive (EW)</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Miles Avenue (EW)</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>SR-111 (EW)</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>48th Avenue (EW)</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

It should be noted that each of these intersections was projected to operate at these same deficient levels of service, before the addition of project traffic, as previously discussed. Since project traffic would worsen conditions at already seriously congested intersections, the project’s traffic impact would be considered significant.

Proposed Project Roadway Improvements

Full street improvements along the Adams Street and SR-111 frontages would be constructed as part of the proposed project, in accordance with the ultimate street configuration specifications for these roadways as set forth in the City’s Circulation Element. Adams Street improvements would be constructed during the first project phase, along the entire western site frontage. SR-111 would be improved from Adams Street to the proposed project entrance, during the first project phase, with the remaining frontage to be improved at the time of development of the second project phase of the commercial center in the eastern half of the site.

Cumulative Impacts

Cumulative impacts associated with ambient growth throughout the study area are based on the Year 2000 and Year 2005 analyses that have been discussed previously in this EIR section. In summary, these future cumulative traffic volumes would warrant the installation of traffic signals at the project entrance/SR-111 intersection in the Year 2000 and the Adams Street/47th Avenue intersection in 2005, as well as improvements to five intersections in the study area, including:

Year 2000 Significantly Impacted Intersections

- Washington Street at SR 111
- Washington Street at 48th Avenue
- Dune Palms Road at SR 111
- Jefferson Street at Miles Avenue

Year 2005 Significantly Impacted Intersections

Same four intersections listed for Year 2000, plus:

- Washington Street at Fred Waring Drive
MITIGATION MEASURES

On-Site Improvements

TC1. The proposed project shall have full access to SR-111 and Adams Street. The project developer(s) shall construct the site-specific circulation recommendations as depicted in Figure 20.

TC2. Sight distance at each project entrance shall be reviewed with respect to standard Caltrans/City of La Quinta sight distance standards at the time of preparation of final grading, landscape and street improvement plans.

Off-Site Roadway Improvements

TC3. The project developer(s) shall provide a westbound 400 foot left turn pocket on SR-111 for vehicles desiring to turn left into the project site.

TC4. The project developer(s) shall provide a southbound 300 foot left turn pocket on Adams Street for vehicles desiring to turn left into the project site.

TC5. Construct intersection improvements, as identified in Table 19. The project developer(s) shall participate in the construction of traffic improvements at affected locations in the City’s arterial network, through payment of required Infrastructure Development Fees.

Transportation Demand Management Actions

TC6. The project developer(s) shall consult with the Sunline Transit Agency to consider expanding service within the area.

TC7. Prior to the issuance of building permits for any individual or combined site development involving at least 100 employees, prepare TDM plans for City approval, in accordance with Section 9.180 of the La Quinta Municipal Code. The TDM plans shall also satisfy the requirements of SCAQMD Rule 2202, and shall be reasonably calculated to achieve an average vehicle occupancy rate (VOR) of 1.3. The TDM plan shall also indicate specific strategies and guidelines to reduce the number of single-occupant vehicle trips and increase the amount of non-vehicular transportation.
FIGURE 20. Recommended Transportation System Improvements
Table 19

Recommended Intersection Improvements by Project Phase

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Intersection</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Washington St./SR-111</td>
<td>Lane improvements currently under construction</td>
</tr>
<tr>
<td></td>
<td>Washington St./48th Ave.</td>
<td>Traffic Signal <sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Project Entrance/SR-111</td>
<td>Traffic Signal <sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Dune Palms Rd./SR-111</td>
<td>Traffic Signal <sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Jefferson St./Miles Ave.</td>
<td>Traffic Signal <sup>3</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB Left Turn Lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB Left Turn Lane</td>
</tr>
<tr>
<td></td>
<td>Jefferson St./48th Ave.</td>
<td>Traffic Signal <sup>1</sup></td>
</tr>
<tr>
<td>2</td>
<td>No Additional Improvements Required</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Washington St./Fred Waring Dr.</td>
<td>NB Through Lane <sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>Adams St./47th Ave.</td>
<td>SB Through Lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic Signal <sup>2</sup></td>
</tr>
</tbody>
</table>

¹ Improvement is planned for near-term installation by City of La Quinta in Year 1997.

² Improvement to be provided by the project developer.

³ The Jefferson Street/Miles Avenue intersection is a remote off-site intersection that is owned by more than one jurisdiction. Seventy-five percent of this intersection is owned by the City of Indio. The City of La Quinta will pay for 25% of the traffic signal, while the City of Indio and the CVAG Regional Arterial Fund are responsible for the other 75% of the traffic signal. The CVAG Regional Arterial Fund acts as the mitigation measure for impacts created at remote locations in other jurisdictions.

⁴ Washington Street/Fred Waring Drive intersection is 50% within La Quinta, 25% within Palm Desert and 25% within unincorporated Riverside County. The City of La Quinta will pay for 50% of these lane improvements, while the City of Palm Desert, Riverside County and the CVAG Regional Arterial Fund would be responsible for the other 50%.

TC8. To accommodate future bus service on key roadways, the project developer(s) shall plan transit stops at the far side of major intersections and at locations which would not conflict with peak hour traffic flows (see Figure 20 for suggested locations). Pedestrian access to the bus stops shall be provided. Actual transit stop locations shall be coordinated with theSunline Transit Agency.

TC9. The project developer(s) shall provide on-site bike racks on the commercial portion of the project to encourage the use of bicycles as an alternative means of transportation.

TC10. The project developer(s) shall designate a portion of the commercial retail parking area to encourage employee ride sharing.
UNAVOIDABLE SIGNIFICANT IMPACTS

With the successful implementation of the recommended mitigation measures, no unavoidable significant impacts to the study area roadway network would occur as a result of the proposed project.
5.6 AIR QUALITY

INTRODUCTION TO AIR QUALITY

The southern California area has been divided into a number of geographical air basins. The City of La Quinta is located within the Salton Sea Air Basin (herein referred to as the Basin), which includes the Coachella Valley portion of Riverside County and all of Imperial County. This area consistently generates levels of smog that exceed State and Federal air quality standards. The factors that influence this determination are discussed below.

Smog and its Causes

Smog is a general term based on the words smoke and fog that is used to describe dense, visible air pollution. Although some air pollutants are colorless, smog is commonly used to describe the general concentrations of pollutants in the air. Smog is formed when combustion emissions and gaseous emissions, such as volatile organic compounds (VOC), oxides of nitrogen (NOx), and oxides of sulfur (SOx), undergo photochemical reactions in sunlight to form ozone (O3). Ozone is a gas that, in the upper atmosphere, helps to shield the Earth from harmful radiation. However, in the lower atmosphere where people live, ozone poses health risks and damages crops, rubber, and other materials. Particulates, such as soil and dust materials, and vehicle exhaust particulates often mix with ozone, carbon monoxide (CO), and other compounds and create a brownish, haze in the air. “Smog episode” warnings occur when an occurrence of high concentrations of ozone is predicted that could endanger public health.

The topography and climate of the Basin combine to make it an area of high smog potential. During the summer months, a warm air mass frequently descends over the lower, cool air layer. The warm upper layer forms a cap over the cool layer and inhibits the air pollutants generated near the ground from dispersing upward. Light summer winds and the surrounding mountains further limit the horizontal disbursement of the pollutants. Concentrating volumes of pollutants in this manner allows the summer sunlight to generate high levels of smog. In the winter, cool ground temperatures and very light winds cause extremely low inversions and air stagnation which traps CO and NOx during the late night and early morning hours. On days when no inversions occur, or when winds average 25 miles per hour or more, there will be no important smog effects in summer or winter.

The Basin’s location also influences the amount of smog found here. Presently, the exceedances of ozone in the Basin are largely the result of pollutant transport from the upwind South Coast Air Basin which includes highly developed portions of Los Angeles, Orange, San Bernardino, and Riverside Counties. The arid environment of the Basin, heavy construction activities, vehicle travel on unpaved roads, travel on
paved roads with silty debris, and the common occurrence of high winds contributes to high concentrations of PM$_{10}$.

The air pollutants within the Basin are primarily generated by two categories of sources: these are stationary and mobile sources. Stationary sources are known as "point sources" which have one or more emission sources at a single facility, or "area sources" which are widely distributed and produce many small emissions. Point sources are usually associated with manufacturing and industrial uses and include sources, such as refinery boilers or combustion equipment, that produce electricity or process heat. Examples of area sources include residential water heaters, painting operations, lawn mowers, agricultural fields, landfills, and consumer products, such as barbecue lighter fluid or hair spray. "Mobile sources" refer to operational and evaporative emissions from motor vehicles.

Regulatory Agencies and Responsibilities

Air quality within the Basin is addressed through the efforts of various Federal, State, regional, and local government agencies. These agencies work jointly, as well as individually, to improve air quality through legislation, regulations, planning, policy-making, education, and a variety of programs. The agencies primarily responsible for improving the air quality within the Basin are discussed below along with their individual responsibilities.

U.S. Environmental Protection Agency

The U.S. Environmental Protection Agency (U.S. EPA) is responsible for enforcing the 1990 amendments to the Federal Clean Air Act (CAA) and the national ambient air quality standards (Federal standards) that it establishes. These standards identify levels of air quality for six "criteria" pollutants which are considered the maximum levels of ambient (background) air pollutants considered safe, with an adequate margin of safety, to protect the public health and welfare. The six criteria pollutants include ozone, CO, nitrogen dioxide (NO$_2$—a form of NOx), sulfur dioxide (SO$_2$—a form of SOx), particulate matter 10 microns in size and smaller (PM$_{10}$), and lead. The U.S. EPA also has regulatory and enforcement jurisdiction over emission sources beyond State waters (outer continental shelf), and those that are under the exclusive authority of the Federal government, such as aircraft, locomotives, and interstate trucking.

In response to its enforcement responsibilities, the U.S. EPA requires each state to prepare and submit a State Implementation Plan (SIP) that describes how the state will achieve the Federal standards by specified dates, depending on the severity of the air quality within the state or air basin. The Salton Sea Air Basin is currently classified by the U.S. EPA as a "severe-17" extreme non-attainment area for ozone and a serious non-attainment area for PM$_{10}$. Much of this is the result of the downwind transport of
pollutants from the South Coast Air Basin. The SCAQMD has predicted and demonstrated attainment for the South Coast Air Basin and the Coachella Valley by November 15, 2007 as required by the Federal Clean Air Act. Attainment will only occur, however, through an aggressive control strategy for VOC and NOx emissions in the South Coast Air Basin and control of locally generated emissions via proposed control measures implemented by State and Federal actions.

Under the compliance timetables, the Basin must achieve attainment status for PM10 by the most expeditious date that can be achieved, but no later than five years from the date the area was designated non-attainment. If the Basin experiences difficulty doing so, the U.S. EPA may extend the period for attainment for an additional 10 years. The Basin did not violate the Federal PM10 standards during the years 1992 through 1994 and a request has been made by the South Coast Air Quality Management District (SCAQMD) to the U.S. EPA to redesignate the Basin as an attainment area for PM10. This request is currently being considered by the U.S. EPA.

California Air Resources Board

The California Air Resource Board (ARB), a department of the California Environmental Protection Agency (CALEPA), oversees air quality planning and control throughout California. It is primarily responsible for ensuring implementation of the 1989 amendments to the California Clean Air Act (CCAA), responding to the Federal CAA requirements, and for regulating emissions from motor vehicles and consumer products within the State. The ARB has established emission standards for vehicles sold in California and for various types of equipment available commercially. It also sets fuel specifications to further reduce vehicular emissions.

The amendments to the CCAA establish ambient air quality standards for the State (State standards) and a legal mandate to achieve these standards by the earliest practicable date. These standards apply to the same six criteria pollutants as the Federal CAA, and also include sulfate, visibility, hydrogen sulfide, and vinyl chloride. They are also more stringent than the Federal standards and, in the case of PM10 and SO2, far more stringent.

Based on monitored pollutant levels, the CCAA divides non-attainment areas into three categories—moderate, serious, and severe—to which progressively more stringent requirements apply. The Basin is classified as a severe non-attainment area for ozone (PM10 is not currently addressed in the CCAA). Under this classification, an air quality management plan is required to be prepared to include specific emission reduction strategies, and to meet specified milestones in implementing emission controls to achieve more healthful air. The new control strategies include an indirect and area source control program, best available retrofit control technology for existing sources, a program to mitigate all
emissions from new and modified permitted stationary sources (no net increase), transportation control measures, and substantial use of low-emission vehicles (e.g., natural gas, or methanol-powered vehicles) by fleet operators. The CCAA also requires control measures to be ranked by priority and cost-effectiveness. The air quality management plans must achieve a reduction in emissions of five percent or more per year, or 15 percent or more in a three year period for pollutants causing severe non-attainment. According to SCAQMD staff, the SCAQMD considers it's AQMPs to comply with this requirement.

Southern California Association of Governments

The Southern California Association of Governments (SCAG) is a council of governments for the Counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. SCAG is a regional planning agency and serves as a forum for regional issues relating to transportation, the economy, community development, and the environment. SCAG also serves as the regional clearinghouse for projects requiring environmental documentation under Federal and State law. In this role, SCAG reviews proposed projects to analyze their impacts on SCAG's regional planning efforts.

Although SCAG is not an air quality management agency, it is directly involved in several air quality planning programs. Specifically, as the designated Metropolitan Planning Organization (MPO) for the southern California region, it is responsible, pursuant to §176(c) of the 1990 amendments to the CAA, for providing current population, employment, travel, and congestion projections for regional air quality planning efforts. It is required to quantify and document the demographic and employment factors influencing expected transportation demand, including land use forecasts. Pursuant to California Health and Safety Code Section §40460(b), SCAG is also responsible for preparing and approving the portions of the Basin's air quality management plans relating to demographic projections and integrated regional land use, housing, employment, and transportation programs, measures, and strategies. SCAG's method of accomplishing these requirements is through the preparation of the Growth Management Chapter of the Regional Comprehensive Plan and Guide (RCPG).

Coachella Valley Association of Governments

The Coachella Valley Association of Governments (CVAG) is a council of governments composed of cities in the Coachella Valley. The CVAG plays a key role in the implementation of the Coachella Valley PM\textsubscript{10} Plan (discussed later), wherein it is responsible for coordinating and monitoring local government efforts to reduce PM\textsubscript{10} emissions.
South Coast Air Quality Management District

The management of air quality in the Basin is the responsibility of the SCAQMD. This responsibility was given to the SCAQMD by the California Legislature’s adoption of the 1977 Lewis-Presley Air Quality Management Act which merged four county air pollution control bodies into one regional district. Under the Act, the SCAQMD is responsible for bringing air quality in the areas under its jurisdiction into conformity with Federal and State air quality standards. Specifically, the SCAQMD has the responsibility to monitor ambient air pollutant levels throughout the Basin and to develop and implement attainment strategies to ensure that future emissions will be within Federal and State standards.

SCAQMD Air Quality Management Plan

As discussed previously, the Federal and State Clean Air Acts require the preparation of plans to reduce air pollution to healthful levels. The SCAQMD has responded to this requirement by preparing a series of air quality management plans, the most recent of which was adopted by the governing board on November 15, 1996. The 1997 Air Quality Management Plan (AQMP) was prepared to comply with the provisions of the 1989 California Clean Air Act and the 1990 Federal Clean Air Act amendments, to accommodate growth, to reduce the high levels of pollutants within the Basin, to meet State and Federal air quality standards, and to minimize the fiscal impact pollution control measures have on the local economy. Principal control policies and measures for improving the Basin's air quality include: extensive use of clean fuels, transportation control measures, market incentives, and facility permitting. Many of these policies and measures have been adopted as rules by the SCAQMD Governing Board or may be adopted as rules in the future.

The air quality levels projected in the AQMP are based on several assumptions. For example, the AQMP assumes that general development associated with general plans, specific plans, residential projects, and wastewater facilities will be constructed in accordance with population growth projections identified by SCAG in its most current version of the RCPG. The AQMP also assumes that general development projects will implement strategies (mitigation measures) to reduce emissions generation during the construction and operational phases of development. The project’s consistency with the AQMP is discussed later in this EIR section.

Coachella Valley PM_{10} Attainment Redesignation Request and Maintenance Plan

As discussed previously, the Basin has been designated a serious non-attainment area for PM_{10}. With application of the U.S. EPA's Natural Events Policy, this area did not exceed Federal PM_{10} standards between 1992 and 1994 and, thus, is eligible for redesignation to attainment. On December 13, 1996, the Governing Board of the SCAQMD adopted a special PM_{10} maintenance plan, which has been submitted for EPA approval, along with a request to redesignate the Coachella Valley as an attainment area for PM_{10}.

5.6-5
In accordance with U.S. EPA guidance, the plan consists of a demonstration of attainment, a maintenance plan, contingency measures, and a Natural Events Action Plan. This plan and request is currently being reviewed by the U.S. EPA.

SCAQMD Rules and Regulations

The SCAQMD is responsible for limiting the amount of emissions that can be generated throughout the Basin by various stationary and mobile sources. Specific rules and regulations have been adopted by the SCAQMD Governing Board which limit the emissions that can be generated by various uses and/or activities, and identify specific pollution reduction measures which must be implemented in association with various uses and activities. These rules not only regulate the emissions of the six criteria pollutants, but also toxic emissions and acutely hazardous materials. They are also subject to ongoing refinement by the SCAQMD.

Emissions sources subject to these rules are regulated through the SCAQMD's permitting process. Through this permitting process, the SCAQMD also monitors the amount of stationary emissions being generated and uses this information in developing the AQMP. The proposed project would be subject to SCAQMD rules and regulations to reduce specific emissions and to mitigate potential air quality impacts. These are identified in the Mitigation Measures discussion in this EIR section.

CEQA Air Quality Handbook

In 1994, the SCAQMD prepared its *CEQA Air Quality Handbook* as a guidance document to assist local government agencies and consultants in preparing environmental documents for projects subject to the California Environmental Quality Act (CEQA). The Handbook is an advisory document and local jurisdictions are not required to utilize the methodology outlined therein. This document describes the criteria that the SCAQMD uses when reviewing and commenting on the adequacy of environmental documents, such as this EIR. It recommends thresholds for use in determining whether projects would have significant adverse environmental impacts, identifies methodologies for predicting project emissions and impacts, and identifies measures that can be used to avoid or reduce air quality impacts. Although the *CEQA Air Quality Handbook* has been adopted by the Governing Board of the SCAQMD, it does not, nor does it intend to supersede a local jurisdiction's CEQA procedures. This EIR was prepared following the recommendations of the SCAQMD found in the SCAQMD's *CEQA Air Quality Handbook*.

1 Defined by the Federal government as an air pollutant to which no ambient air quality standard is applicable and which, in the judgment of the administrator of the U.S. EPA, may result in an increase in mortality, serious irreversible illness, or incapacitating reversible illness.
Local Governments

Local governments, such as the City of La Quinta, have the authority and responsibility to reduce air pollution through their police power and land use decision-making authority. Specifically, local governments are responsible for the mitigation of emissions resulting from land use decisions and for the implementation of transportation control measures as outlined in the AQMP and the Coachella Valley PM_{10} Plan.2 The AQMP assigns local governments certain responsibilities to assist the Basin in meeting air quality goals and policies. In general, a first step toward implementation of a local government’s responsibility is accomplished by identifying air quality goals, policies, and implementation measures in its general plan. Through capital improvement programs, local governments can fund infrastructure that contributes to improved air quality, by requiring such improvements as bus turnouts, energy-efficient street lights, and synchronized traffic signals.3 In accordance with CEQA requirements and the CEQA review process, local governments assess air quality impacts, require mitigation of potential air quality impacts by conditioning discretionary permits, and monitor and enforce implementation of such mitigation.4

EXISTING AIR QUALITY

Regional Air Quality

To monitor the concentrations of the six criteria pollutants, the SCAQMD has divided the Basin into source receptor areas (SRAs) in which 32 air quality monitoring stations are operated. The City of La Quinta is located within SRA 30, which encompasses the Coachella Valley. The stations that monitor this SRA are located in Indio and Palm Springs. The Indio station is most representative of La Quinta and presently monitors emission levels of O_3, NO_2, and PM_{10}. The Palm Springs station monitors these two pollutants in addition to CO.

Table 20, below, lists the concentrations registered and the violations of State and Federal standards that have occurred in the Coachella Valley from 1991 through 1995. As shown, the values have been registered above State and Federal standards for O_3 and PM_{10}. Concentrations of CO have not been exceeded in the Coachella Valley. Concentrations of the other three criteria pollutants—NO_2, SO_2 and lead—have not been exceeded anywhere within the Salton Sea and South Coast Air Basins for several years.

2 CEQA Air Quality Handbook, p. 2-2.
3 Ibid.
4 Ibid.
Local Vicinity Emissions

The vicinity of the project site is characterized by residential and commercial uses, and open space. Emissions sources include stationary activities, such as space heating, cooking, and water heating, and mobile activities—primarily automobile and truck traffic. Motor vehicles are the primary sources of pollutants within the project vicinity.

<table>
<thead>
<tr>
<th>Table 20</th>
<th>Ambient Pollutant Concentrations Registered in the Coachella Valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant</td>
<td>Standards(^1,2) Year 1991 1992 1993 1994 1995</td>
</tr>
<tr>
<td>OZONE (O(_3))</td>
<td></td>
</tr>
<tr>
<td>Max. 1-hour concentration monitored (ppm)</td>
<td>0.18 0.14 0.16 0.17 0.16</td>
</tr>
<tr>
<td>No. of days exceeding Federal std.</td>
<td>>0.12 ppm 13 8 3 13 9</td>
</tr>
<tr>
<td>No. of days exceeding State std.</td>
<td>>0.09 ppm 48 45 25 71 49</td>
</tr>
<tr>
<td>No. of days with stage 1 ozone episode</td>
<td>40.20 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>No. of days with stage 2 ozone episode</td>
<td>0.35 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>CARBON MONOXIDE (CO)</td>
<td></td>
</tr>
<tr>
<td>Max. 1-hour concentration monitored (ppm)</td>
<td>5.0 5.0 6.0 4.0 3.0</td>
</tr>
<tr>
<td>No. of days exceeding Federal 1-hour std.</td>
<td>>35.0 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>No. of days exceeding State 1-hour std.</td>
<td>>20.0 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>Max. 8-hour concentration monitored (ppm)</td>
<td>2.5 2.4 2.0 1.9 1.5</td>
</tr>
<tr>
<td>No. of days exceeding Federal and State 8-hour std.</td>
<td>0.1 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>NITROGEN DIOXIDE (NO(_2))</td>
<td></td>
</tr>
<tr>
<td>Max. 1-hour concentration monitored (ppm)</td>
<td>0.09 0.09 0.15 0.08 0.09</td>
</tr>
<tr>
<td>Annual average monitored (ppm)</td>
<td>0.0208 0.0210 0.0195 0.0219 0.0223</td>
</tr>
<tr>
<td>Percentage of average exceeding Federal std.</td>
<td>0.0534 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>No. of days exceeding 1-hour State std.</td>
<td>>0.25 ppm 0 0 0 0 0</td>
</tr>
<tr>
<td>SUSPENDED PARTICULATE MATTER (PM(_{10}))</td>
<td></td>
</tr>
<tr>
<td>Max. 24-hour concentration ((\mu g/m^3))</td>
<td>340 117 125 97 199</td>
</tr>
<tr>
<td>No. of samples</td>
<td>59 59 61 60 61</td>
</tr>
<tr>
<td>No. of samples exceeding Federal std.</td>
<td>>150 (\mu g/m^3) 3 0 0 0 1</td>
</tr>
<tr>
<td>No. of samples exceeding State std.</td>
<td>>50 (\mu g/m^3) 37 18 25 23 27</td>
</tr>
<tr>
<td>Percent of samples exceeding Federal std.</td>
<td>>150 (\mu g/m^3) 5.1 0 0 0 1.6</td>
</tr>
<tr>
<td>Percent of samples exceeding State std.</td>
<td>>50 (\mu g/m^3) 62.7 30.5 41.0 38.3 44.3</td>
</tr>
</tbody>
</table>

\(^1\)Parts by volume per million of air (ppm), micrograms per cubic meter of air (\(\mu g/m^3\)), or annual arithmetic mean (aan).

\(^2\)Federal and State standards are for the same time period as the maximum concentration measurement unless otherwise indicated.

Traffic-congested roadways and intersections have the potential to generate localized high levels of CO. Localized areas where ambient concentrations exceed state and/or federal standards are termed CO "hotspots."
The SCAQMD recommends the use of CALINE4, a dispersion model developed by the California Department of Transportation (Caltrans) for predicting CO concentrations near roadways, as the preferred method of estimating pollutant concentrations at various locations. CALINE4 adds roadway-specific CO emissions calculated from peak traffic volumes to ambient CO air concentrations. For this analysis, CO concentrations were calculated based on a simplified CALINE4 procedure developed by the Bay Area AQMD. This methodology assumes worst-case conditions (i.e., wind speed of less than one meter per second and extreme atmospheric stability) and provides a screening of maximum, worst-case, CO concentrations.

The SCAQMD also recommends that the CO analysis focus on “sensitive receptors.” Sensitive receptors are populations that are more susceptible to the effects of air pollution than are the population at large.\(^5\) The SCAQMD identifies the following as sensitive receptors: long-term health care facilities, rehabilitation centers, convalescent centers, retirement homes, residences, schools, playgrounds, child care centers, and athletic facilities.\(^6\)

With this definition, two sensitive receptor areas are located near the project study intersections. Residential development occurs immediately west of the project site along Adams Street, and residential/golf course uses occur to the south, along 48th Avenue. The areas are highlighted in Figure 21. The land uses near all of the other nearby intersections are commercial and/or open space and are not considered sensitive.

Maximum CO concentrations were calculated for peak hour traffic volumes near the sensitive uses at the intersections of Adams Street/48th Avenue and Dune Palms Road/48th Avenue. The results of these calculations are presented in Table 21 for representative receptors located 50, 100, and 300 feet from each roadway. As shown, the CALINE4 model predicts that, under worst case conditions, existing CO concentrations at these intersections would not exceed the State and Federal 1- and 8-hour standards.

Site Specific Emissions

The project site is vacant and, except for occasional fugitive dust during windy conditions, does not generate air emissions.

\(^5\) CEQA Air Quality Handbook, p. 5-1.

\(^6\) Ibid., p. 5-7.
FIGURE 21. SENSITIVE RECEPTOR LOCATIONS.
Table 21
Existing Carbon Monoxide Concentrations

<table>
<thead>
<tr>
<th>Intersection</th>
<th>50 Feet</th>
<th></th>
<th>100 Feet</th>
<th></th>
<th>300 Feet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-Hour</td>
<td>8-Hour</td>
<td>1-Hour</td>
<td>8-Hour</td>
<td>1-Hour</td>
<td>8-Hour</td>
</tr>
<tr>
<td>Adams Street/47th Avenue</td>
<td>4.4</td>
<td>2.1</td>
<td>4.3</td>
<td>2.1</td>
<td>4.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Adams Street/48th Avenue</td>
<td>4.4</td>
<td>2.2</td>
<td>4.3</td>
<td>2.1</td>
<td>4.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Dune Palms Road/48th Avenue</td>
<td>4.1</td>
<td>2.0</td>
<td>4.1</td>
<td>2.0</td>
<td>4.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Emissions calculations are provided in Appendix G.

1 State standard is 20.0 parts per million. Federal standard is 35 parts per million.

2 State and Federal standard is 9.0 parts per million.

IMPACT SIGNIFICANCE CRITERIA

New and modified projects will often affect regional air quality both directly and indirectly. When determining the extent of a project’s environmental impact and the significance of such impact, the project should be compared to established thresholds of significance, if they exist. The City of La Quinta has not officially adopted any thresholds of significance for determining air quality impacts. Therefore, in the absence of such local thresholds, EIRs prepared for projects in the City typically refer to the thresholds recommended by the SCAQMD in its CEQA Air Quality Handbook. The following discusses the thresholds for both construction and operational emissions generated by the proposed project.

Construction Emission Thresholds

The SCAQMD recommends that projects with construction-related emissions that exceed any of the following emissions thresholds should be considered significant:

- 550 pounds per day of CO
- 75 pounds per day of VOC
- 100 pounds per day of NOx
- 150 pounds per day of SOx
- 150 pounds per day of PM10
Operational Emissions

The SCAQMD has recommended two types of air pollution thresholds to assist lead agencies in determining whether or not the operational phase of a project’s development would be significant. These are identified in the following discussion under “Emission Significance Thresholds” and “Additional Indicators of Potential Air Quality Impacts.” The SCAQMD recommends that a project’s impacts be considered significant if either of these thresholds is exceeded.

Emission Significance Thresholds

The SCAQMD recommends that the following thresholds be used by lead agencies in the Coachella Valley in making a determination of operation-related project significance:

- 550 pounds per day of CO
- 75 pounds per day of VOC
- 100 pounds per day of NOx
- 150 pounds per day of SOx
- 150 pounds per day of PM10

Additional Indicators of Potential Air Quality Impacts

The SCAQMD recommends that projects meeting any of the following criteria also be considered to have significant air quality impacts:

- Project could interfere with the attainment of the Federal or State ambient air quality standards by either violating or contributing to an existing or projected air quality violation;

- Project could result in population increases within an area which would be in excess of that projected by SCAG in the AQMP, or increase the population in an area where SCAG has not projected that growth for the project’s build-out year;

- Project could generate vehicle trips that cause a CO hotspot or project could be occupied by sensitive receptors that are exposed to a CO hotspot;

- Project will have the potential to create, or be subjected to, an objectionable odor that could impact sensitive receptors;
• Project will have hazardous materials on site and could result in an accidental release of toxic air emissions or acutely hazardous materials posing a threat to public health and safety;

• Project could emit a toxic air contaminant regulated by SCAQMD rules or that is on a Federal or State air toxic list;

• Project could be occupied by sensitive receptors within one quarter mile of an existing facility that emits air toxics identified in SCAQMD Rule 1401; or

• Project could emit carcinogenic or toxic air contaminants that individually or cumulatively exceed the maximum individual cancer risk of one in one million.

The following discussion reviews the proposed project’s potential impacts relative to each of the recommended significance criteria identified above.

IMPACT ANALYSIS

Project Impacts

Development of the proposed project would generate air emissions from a wide variety of stationary and mobile sources. Stationary source emissions would be generated by on-site construction activities and equipment, and consumption of natural gas and electricity once the proposed uses are occupied. Stationary source emissions could also result from the operation of certain types of commercial business—such as automotive paint centers and dry cleaners—within the project site. Mobile source emissions would be generated by motor vehicle travel associated with construction activities and occupancy of the proposed development. A discussion of recommended significance criteria and an assessment of construction and operational emissions is presented below based on the methodologies recommended in the SCAQMD’s CEQA Air Quality Handbook.

Construction Impacts

Development of the proposed project would require site preparation (i.e., grading) and development of the proposed uses. Site preparation activities are proposed to occur in two major phases, with grading and building site preparation of the entire western half to occur in the first phase of the project, and grading of the remaining eastern half at a future time when more precise development plans for a commercial center have been approved. Initial grading and site preparation work would last for approximately 30 days. During this time, emissions would be generated by on-site stationary sources,
heavy-duty construction vehicles, construction worker vehicles, and energy use. In addition, fugitive dust would be generated by grading and construction activities.

Because of the extended construction time-frame, and the normal day-to-day variability in construction activities, it is difficult—if not impossible—to precisely quantify the daily and quarterly emissions associated with the proposed construction activities. Table 22, however, identifies average daily emissions estimated to be generated during the construction phase based on the methodologies identified in the SCAQMD’s *CEQA Air Quality Handbook*. As shown, recommended thresholds for CO and NOx would likely be exceeded most of the time during the grading and construction operations due to the operation of heavy duty vehicles and earth movement over large portions of the site. PM₁₀ emissions would be expected to exceed recommended thresholds during the grading operations. Because these emissions exceed the SCAQMD’s recommended thresholds, the project’s construction-related impacts are considered significant.

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>CO</th>
<th>VOC</th>
<th>NOx</th>
<th>SOx</th>
<th>PM<sub>10</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading and Construction Equipment¹</td>
<td>551.1</td>
<td>32.8</td>
<td>215.0</td>
<td>14.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1395.2</td>
</tr>
<tr>
<td>Totals:</td>
<td>551.1</td>
<td>32.8</td>
<td>215.0</td>
<td>14.1</td>
<td>1,402.8</td>
</tr>
<tr>
<td>Recommended Threshold:</td>
<td>550.0</td>
<td>75.0</td>
<td>100.0</td>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Exceeds Threshold?:</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Emissions calculations are provided in Appendix G.

¹Includes all construction equipment, employee vehicles, truck and material transport exhaust emissions.

²Assumes eight pieces of earthmoving equipment operating for eight hours per day generating 21.8 pounds of dust per earthmover per hour.

Operation Impacts

Daily Emissions

Operational emissions would be generated by both stationary and mobile sources as a result of normal day-to-day activity on the project site after occupation. Stationary emissions would be generated by the consumption of natural gas for space and water heating devices (including commercial use boilers), and from electric power generation sources. Electrical service is provided in the City by the Imperial Irrigation District which generates its power from a steam plant in El Centro and hydroelectric facilities on the All American Canal. To assume a worst-case analysis, all of the project’s electricity is assumed to be generated by the steam plant since hydroelectric plants generate little, if any, air pollutants. Mobile emissions would be generated by the motor vehicles traveling to and from the project site.
The analysis of daily operational emissions has been prepared utilizing a computer model developed by Impact Sciences using the data and methodologies identified in the SCAQMD’s CEQA Air Quality Handbook. The SCAQMD has approved this model for use. The results of these calculations along with the emission reductions provided by the proposed project design features are presented in Table 23. These calculations assume complete buildout of the project in the year 2005, as currently anticipated.

As shown, emissions of SOx would not exceed the SCAQMD threshold. However, the proposed project would generate total emissions of CO, VOC, NOx, and PM10 which would exceed SCAQMD recommended thresholds upon complete buildout and operation. In each case, the exceedance is due entirely to exhausts that would be generated by project traffic. As the amount of emissions would exceed the recommended thresholds, this impact would be considered significant.

Table 23
Estimated Operational Emissions

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>CO</th>
<th>VOC</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Sources</td>
<td>3,616.3</td>
<td>210.0</td>
<td>311.0</td>
<td>29.1</td>
<td>7,768.0</td>
</tr>
<tr>
<td>Electricity Demand</td>
<td>4.4</td>
<td>0.2</td>
<td>25.1</td>
<td>2.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Natural Gas Demand</td>
<td>1.3</td>
<td>0.3</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Subtotals:</td>
<td>3,621.9</td>
<td>210.6</td>
<td>343.9</td>
<td>31.8</td>
<td>7,768.0</td>
</tr>
<tr>
<td>Recommended Threshold</td>
<td>550.0</td>
<td>75.0</td>
<td>100.0</td>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Emissions calculations are provided in Appendix G. Totals in table may not appear to add exactly due to rounding in the computer model calculations.

Localized emissions could also be generated by various stationary or point sources from commercial uses within the project site. Although the specific types and numbers of commercial emissions sources are not known at this time, it is conservatively assumed that such sources could include automotive paint centers within the proposed auto dealership mall in the western half of the site, and one or more dry cleaners in the future commercial center proposed in the eastern half of the site.

Under SCAQMD Regulation XIII, all point source emitters must obtain construction as well as operating permits from the SCAQMD. Furthermore, should any modifications in business operations occur subsequent to permit issuance, such modifications would also be subject to permit review and approval by the SCAQMD. Regulation XIII requires the Executive Director of the SCAQMD to deny the permit to construct for any relocation or for any new or modified permit unit which results in a net increase of any non-attainment air contaminant, any halogenated hydrocarbons, or ammonia unless 1) Best Available

7 Interview with Steve Smith, South Coast Air Quality Management District, Diamond Bar, California, January 25, 1996.
Control Technology (BACT) is employed for the new or relocated permit unit or for the actual modification to an existing permit unit; 2) computer modeling indicates that the new facility or modification will not cause a significant increase in air quality concentration; 3) the emissions are offset by emissions reduction; and 4) the subject facility fully complies with all applicable SCAQMD rules and regulations. Compliance with this regulation would reduce potential point source emissions to less than significant levels.

Additional Indicators of Potential Air Quality Impacts

- Project could interfere with the attainment of the Federal or State ambient air quality standards by either violating or contributing to an existing or projected air quality violation, and; project could result in population increases within an area which would be in excess of that projected by SCAG in the AQMP, or increase the population in an area where SCAG has not projected that growth for the project's buildout year.

In order to address the first criterion identified above, the SCAQMD's CEQA Air Quality Handbook indicates that an air quality modeling analysis that identifies the project's impact on ambient air quality would need to be performed.\(^8\) In order for a project to be found consistent, the analysis would have to demonstrate that the project's emissions would not increase the frequency or the severity of existing air quality violations, or contribute to a new violation.\(^9\) However, SCAQMD staff indicate that air quality models do not exist for this kind of analysis for general development projects and that no such analysis can be undertaken.\(^10\) Instead, SCAQMD staff state that a project's consistency with the population number and location assumptions identified by SCAG and used in the preparation of the AQMP should be assessed.\(^11\)

As discussed earlier in this analysis, the 1997 AQMP is designed to accommodate growth, to reduce the high levels of pollutants within the areas under the jurisdiction of the SCAQMD, to return clean air to the region by 2010, and to minimize the impact on the economy. Projects which are considered to be consistent with the AQMP do not interfere with attainment and do not contribute to the exceedance of an existing air quality violation because this growth is included in the projections utilized in the formulation of the AQMP. Therefore, projects, uses, and activities that are consistent with the applicable assumptions used in the development of the AQMP would not jeopardize attainment of the air quality levels identified.

\(^8\) Ibid., p. 12-3.
\(^9\) Ibid.
\(^10\) Interview with Steve Smith, South Coast Air Quality Management District, Diamond Bar, California, February 23, 1996.
\(^11\) Ibid.
in the AQMP, even if they exceed the SCAQMD’s recommended thresholds. The following analysis discusses the proposed project’s consistency with the AQMP.

Projects that are consistent with the projections of population forecasts identified in the Growth Management Chapter of the RCPG are considered consistent with the AQMP growth projections. This is because the Growth Management Chapter forms the basis of the land use and transportation control portions of the AQMP.

As discussed in the project’s Initial Study (Appendix B of this EIR), the proposed project does not include any housing units and would not, therefore, have any direct affect upon the City’s resident population or number of housing units. Temporary construction jobs would be created throughout the construction phases of this project, and permanent full and part-time positions, of various sorts would also be created after development and occupancy of the project phases. Since the La Quinta General Plan has assumed development of this site with high intensity commercial uses, future employment associated with this project would be consistent with local and regional planning projections based on the City’s land use designations. Since AQMP forecasts are based on local planning projections, this project would be consistent with the AQMP forecasts for this area, consistent with the air quality-related regional plans, and should not jeopardize attainment of state and federal ambient air quality standards in the Coachella Valley.

Another analytical tool in determining AQMP consistency is to determine how a project accommodates the expected increase in population and employment. Generally, if a project is planned in a way that results in the minimization of vehicle miles traveled (VMT), and consequently the minimization of air pollutant emissions, that project is consistent with the AQMP.12

As discussed in Section 5.5 of this EIR, the proposed project is subject to compliance with the standards of the City’s TDM (Transportation Demand Management) ordinance and, therefore, is required to develop and implement an on-site TDM program for its employees. Projects subject to the ordinance are required to submit a TDM plan which is reasonably calculated to achieve an average vehicle occupancy rate of 1.3 persons per vehicle for employees (a reduction of 23 percent from single occupancy vehicles). This type of program is consistent with the goals of the AQMP for reducing motor vehicle trips and emissions. This EIR section also identifies several mitigation measures that are recommended to reduce the projects potential emissions generated by stationary and mobile sources (see discussion under Mitigation Measures and Emission Reduction Efficiencies). These measures are also consistent with the goals of the AQMP for reducing the impacts associated with new development.

12 CEQA Air Quality Handbook, p. 12-5.
• Project could generate vehicle trips that cause a CO hotspot or project could be occupied by sensitive receptors that are exposed to a CO hotspot.

As was done to assess existing CO concentrations, the simplified CALINE4 procedure was used to predict future CO concentrations 50, 100, and 300 feet from the intersections of Adams Street/47th Avenue, Adams Street/48th Avenue, and Dune Palms Road/48th Avenue in the year 2005 with the proposed project. These calculations are based on the year 2005 baseline plus project traffic volumes. The results of air emissions modeling for the proposed project are shown in Table 24.

As shown, the State and Federal 1- and 8-hour CO standards would not be exceeded with the proposed project’s traffic volumes. Based on this analysis, CO hotspots are not predicted to exist near these intersections and project impacts would not be significant.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>50 Feet</th>
<th>100 Feet</th>
<th>300 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-Hour</td>
<td>8-Hour</td>
<td>1-Hour</td>
</tr>
<tr>
<td>Admas Street/47th Avenue</td>
<td>4.5</td>
<td>2.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Admas Street/48th Avenue</td>
<td>4.3</td>
<td>2.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Dune Palms Road/48th Avenue</td>
<td>4.1</td>
<td>2.0</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Emission calculations are provided in Appendix G.
1 State standard is 20.0 parts per million. Federal standard is 35 parts per million.
2 State and Federal standard is 9.0 parts per million.

• Project will have the potential to create, or be subjected to, an objectionable odor that could impact sensitive receptors.

Airborne odors associated with the project could result primarily from cooking activities within the project’s retail/commercial complex. Food-related odors would be typical of food service businesses. In each case, such odors would be controlled in accordance with Riverside County Department of Health Services policies and procedures, SCAQMD permit requirements for proper air filtration and food storage and disposal, and SCAQMD Rule 402 which prohibits persons from discharging quantities of air contaminants which cause nuisance to any considerable number of persons. Consequently, no significant impacts from such odors are anticipated.

• Project will have hazardous materials on site and could result in an accidental release of toxic air emissions or acutely hazardous materials posing a threat to public health and safety; project could emit a toxic air contaminant regulated by SCAQMD rules or that is on a Federal or State air toxic list; project could be occupied by sensitive receptors within one quarter mile of an existing facility.
that emits air toxics identified in SCAQMD Rule 1401; or project could emit carcinogenic or toxic air contaminants that individually or cumulatively exceed the maximum individual cancer risk of one in one million.

Toxic air pollutants are not expected to occur in any meaningful amounts in conjunction with operation of the proposed project. Only common forms and relatively minor volumes of hazardous or toxic substances typically used, stored, or sold in conjunction with automotive sales and services, retail, commercial services and restaurant activities would be present in small quantities. Most uses of such substances would occur indoors. Only a few uses that could be developed on the site would require emitting toxic pollutants as a by-product. These common uses, their source types, and the potential emissions are identified in Table 25. Any uses of toxic substances that could involve an air release would be subject to regulatory control under the permitting authority of the SCAQMD. The potential for toxic air pollutants would be evaluated during the permit process by the SCAQMD, which may require emission control equipment at the site. Based on the requirement to obtain permits, and the common uses expected on the site, no significant impacts are expected to occur.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Source Type</th>
<th>Air Toxic Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Machine Shop</td>
<td>Arc Grinders</td>
<td>Asbestos</td>
</tr>
<tr>
<td>Brake Realignment Shop</td>
<td>Arc Grinders</td>
<td>Asbestos</td>
</tr>
<tr>
<td>Auto Body Shop</td>
<td>Spray Booth</td>
<td>Hexavalent Chromium</td>
</tr>
<tr>
<td>Gas Station</td>
<td>Fuel Dispensers</td>
<td>Benzene</td>
</tr>
<tr>
<td>Dry Cleaners</td>
<td>Cleaning Equipment</td>
<td>Perchloroethylene</td>
</tr>
</tbody>
</table>

Source: South Coast Air Quality Management District, CEQA Air Quality Handbook (Diamond Bar, California: South Coast Air Quality Management District, November 1993), p. 3-13.
Operational Impacts Conclusion

Operational emissions generated primarily from vehicular traffic generated by the proposed uses would exceed SCAQMD recommended thresholds of significance and, for that reason, they are considered significant. The proposed project would, however, be consistent with the AQMP. Consequently, the proposed project would not jeopardize attainment of the air quality standards predicted in the AQMP.

Cumulative Impacts

The SCAQMD’s CEQA Air Quality Handbook identifies three possible methods to determine the cumulative significance of land use projects. The SCAQMD has not identified thresholds to which the total emissions of all cumulative development can be compared. The thresholds identified and used earlier in this EIR section only apply to the emissions generated by individual projects rather than the emissions generated by a cumulative project set. Instead, the SCAQMD’s methods are based on performance standards and emission reduction targets necessary to attain the Federal and State air quality standards identified in the AQMP.

As discussed earlier, the 1997 AQMP was prepared to accommodate growth, to reduce the high levels of pollutants within the Basin, to meet State and Federal air quality standards, and to minimize the fiscal impact that pollution control measures have on the local economy. If the analysis shows that an individual project is consistent with the AQMP performance standards, the project’s cumulative impact could be considered less than significant. If the analysis shows that the project does not comply with the standards, then cumulative impacts are considered to be significant, unless there is other pertinent information to the contrary.

The following analysis assesses the proposed project’s cumulative impacts based on the appropriate performance standard and emissions reduction targets recommended in the SCAQMD’s CEQA Air Quality Handbook.

• One Percent Per Year Reduction in Project Emissions of CO, VOC, NO₅, SO₅, and PM₁₀.

According to the SCAQMD’s CEQA Air Quality Handbook, the one percent per year reduction analysis can be performed by calculating a project’s total unmitigated emissions and then dividing them by the

14 Ibid., p. 9-12.
15 Ibid., p. 9-12.
reductions from the application of mitigation measures. This will provide the percent reduction in project emissions.

As shown later in Table 26 (under Mitigation Measures), the emission reduction efficiencies predicted for the proposed project represent reductions of 4.5 percent of the project’s CO emissions, 4.4 percent of VOC emissions, 6.0 percent of NOx, and 4.5 percent of PM_{10} emissions. Similar reduction percentages can be expected to occur on an annual basis. These reductions exceed the SCAQMD’s performance standard for annual emissions reductions. The SCAQMD’s CEQA Air Quality Handbook does not identify any reduction efficiencies for emissions of SOx. It is also assumed, that these measures would reduce emissions of SOx by a minimum of 1.0 percent, given that the minimum reduction for other mobile emissions is 4.4 percent. Therefore, the proposed project would exceed the SCAQMD’s performance standard for annual emissions reductions and the project’s emissions would not be considered cumulatively significant.

MITIGATION MEASURES

No significant cumulative air quality impacts have been identified. Each of the following measures are recommended to reduce the project-level impacts to the extent practical and feasible.

Construction Impacts

The SCAQMD has prepared a list of measures to reduce the impacts of construction-related emissions to the greatest extent possible. Those that could be feasibly implemented during the development of the proposed project are as follows:

AQ1. The project developer shall prepare and implement a construction management plan, as approved by the City of La Quinta, which includes the following measures recommended by the SCAQMD, or equivalently effective measures approved by the SCAQMD:

a. Configure construction parking to minimize traffic interference.

b. Provide temporary traffic controls during all phases of construction activities to maintain traffic flow (e.g., flag person).

c. Schedule construction activities that affect traffic flow on the arterial system to off-peak hours.
d. Reroute construction trucks away from congested streets.

e. Consolidate truck deliveries when possible.

f. Provide dedicated turn lanes for movement of construction trucks and equipment on- and off-site.

g. Prohibit truck idling in excess of two minutes.

h. Maintain equipment and vehicle engines in good condition and in proper tune as per manufacturers' specifications and per SCAQMD rules, to minimize exhaust emissions.

i. Suspend use of all construction equipment operations during second stage smog alerts. Contact the SCAQMD at 800/242-4022 for daily forecasts.

j. Use electricity from power poles rather than temporary diesel- or gasoline-powered generators.

k. Use methanol- or natural gas-powered mobile equipment and pile drivers instead of diesel if readily available at competitive prices.

l. Use propane- or butane-powered on-site mobile equipment instead of gasoline if readily available at competitive prices.

AQ2. The developer shall prepare and implement a PM_{10} Plan based on the measures of SCAQMD Rule 403, Fugitive Dust, which are in effect at the time of development. The following measures are currently recommended to implement Rule 403, Fugitive Dust. These measures have been quantified by the SCAQMD as being able to reduce dust generation between 30 and 85 percent depending on the source of the dust generation.

a. Apply approved non-toxic chemical soil stabilizers according to manufacturer's specification to all inactive construction areas (previously graded areas inactive for four days or more).

b. Replace ground cover in disturbed areas as quickly as possible.

c. Enclose, cover, water twice daily, or apply approved soil binders to exposed piles (i.e., gravel, sand, dirt) according to manufacturers' specifications.
d. Water active grading sites at least twice daily.

e. Suspend all excavating and grading operations when wind speeds (as instantaneous gusts) exceed 25 mph.

f. Provide temporary wind fencing consisting of three- to five-foot barriers with 50 percent or less porosity along the perimeter of sites that have been cleared or are being graded.

g. All trucks hauling dirt, sand, soil, or other loose materials are to be covered or should maintain at least two feet of freeboard (i.e., minimum vertical distance between top of the load and the top of the trailer), in accordance with Section 23114 of the California Vehicle Code.

h. Sweep streets at the end of the day if visible soil material is carried over to adjacent roads (recommend water sweepers using reclaimed water if readily available).

i. Install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off trucks and any equipment leaving the site each trip.

j. Apply water three times daily or chemical soil stabilizers according to manufacturers’ specifications to all unpaved parking or staging areas or unpaved road surfaces.

k. Enforce traffic speed limits of 15 mph or less on all unpaved roads.

AQ3. The developer shall implement all rules and regulations adopted by the Governing Board of the SCAQMD which are applicable to the development of the project (such as Rule 402, Nuisance, and Rule 1113, Architectural Coatings) and which are in effect at the time of development.

Operation Impacts

The SCAQMD has also prepared a list of measures that could be implemented by new projects to reduce the impacts of operation-related emissions. The following are those measures and others that could be feasibly implemented by the proposed project.
Stationary Sources

AQ4. Where applicable, business owners and operators shall implement all rules and regulations adopted by the Governing Board of the SCAQMD which are applicable to their individual commercial use (such as Rule 402, Nuisance, Rule 1102, Petroleum Solvent Dry Cleaners, Rule 1111, NO, Emissions from Natural Gas-Fired, Fan-Type Central Furnaces, Rule 1146, Emissions of Oxides of Nitrogen from Industrial, Institutional, and Commercial Boilers, Steam Generators, and Process Heaters) and which are in effect at the time of occupancy.

AQ5. Where feasible, use solar or low emission water heaters to reduce natural gas consumption and emissions.

AQ6. Use energy-efficient and automated controls for air conditioners to reduce energy consumption and emissions.

AQ7. Use automatic lighting on/off controls and energy-efficient lighting to reduce electricity consumption and associated emissions.

AQ8. Use light-colored roofing materials as opposed to dark roofing materials. These materials would reflect, rather than absorb, sunlight and minimize heat gains in buildings. This measure would lessen the overall demand for mechanical air conditioning systems.

AQ9. Comply with Title 24 of the California Code of Regulations which are current at the time of development.

Mobile Sources

AQ10. If any drive-through windows are proposed at a later date on the commercial portion of the site, traffic flow at these drive-throughs shall be improved by designing separate windows for different functions and by providing temporary parking for orders not immediately ready for pickup.

AQ11. Provide bicycle facility improvements on the project site with access to off-site roadways.

AQ12. Implement all mitigation measures identified in Section 5.5, Transportation and Circulation for intersection improvements that would reduce traffic congestion.
AQ13. Implement an on-site vehicle circulation plan to reduce vehicle queuing.

AQ14. Provide on-site pedestrian facility improvements.

Emission Reduction Efficiencies

Ranges of emission reduction efficiencies for recommended mitigation measures are identified in Table 11-6 of the SCAQMD’s CEQA Air Quality Handbook for the operational emissions reductions provided by these types of measures.\(^{16}\) The SCAQMD recommends that the low end of the range should be used when selecting the efficiencies for various projects unless otherwise justified.\(^{17}\) Table 26 shows the emission reduction efficiencies predicted for the project and the mobile and stationary emissions that would be reduced by the recommended mitigation measures using the low end of the reduction efficiency ranges to provide a worst-case analysis. These numbers represent reductions of 4.5 percent of the project’s CO emissions, 4.4 percent of VOC emissions, 6.0 percent of NO\(_x\), and 4.5 percent of PM\(_{10}\) emissions.

<table>
<thead>
<tr>
<th>Recommended Measure</th>
<th>Emission Reduction Efficiency (pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Stationary Sources</td>
<td></td>
</tr>
<tr>
<td>• Low emission water heaters</td>
<td>0.0</td>
</tr>
<tr>
<td>• Energy-efficient and automated air conditioners</td>
<td>0.0</td>
</tr>
<tr>
<td>• Automatic lighting/energy-efficient lighting</td>
<td>0.4</td>
</tr>
<tr>
<td>• Light-colored roof materials</td>
<td>0.0</td>
</tr>
<tr>
<td>• Comply with Title 24</td>
<td>0.5</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td></td>
</tr>
<tr>
<td>• Fast-food restaurant windows</td>
<td></td>
</tr>
<tr>
<td>• Provide bicycle improvements</td>
<td>10.8</td>
</tr>
<tr>
<td>• Implement all traffic mitigation measures</td>
<td>144.7</td>
</tr>
<tr>
<td>• On-site parking lot circulation plans</td>
<td></td>
</tr>
<tr>
<td>• Pedestrian facility improvements</td>
<td>7.2</td>
</tr>
<tr>
<td>Total Reductions</td>
<td>163.8</td>
</tr>
<tr>
<td>Percent Reductions</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Sources: CEQA Air Quality Handbook, pp. 11-18 - 11-26; and Impact Sciences, Inc. Calculations are provided in Appendix G.

\(^{16}\) No emissions reduction efficiencies are provided for SO\(_x\) emissions.

\(^{17}\) CEQA Air Quality Handbook, p. 11-7.
UNAVOIDABLE SIGNIFICANT IMPACTS

The recommended mitigation measures would reduce the magnitude of construction-related and operation-related emissions to some extent. However, no feasible mitigation exists which would reduce these emissions to below the SCAQMD’s recommended thresholds of significance. The project’s construction-related and operation-related emissions would be considered unavoidably significant in this context. The project’s emissions would, however, be consistent with those projected in the AQMP and the project should not jeopardize attainment of state and federal ambient air quality standards in the Coachella Valley.
INTRODUCTION TO NOISE

Noise is usually defined as unwanted sound. It is an undesirable by-product of society's normal day-to-day activities. Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm, or when it has adverse effects on health. The definition of noise as unwanted sound implies that it has an adverse effect on people and their environment.

Noise is measured on a logarithmic scale of sound pressure level known as a decibel (dB). The human ear does not respond uniformly to sounds at all frequencies, being less sensitive to low and high frequencies than to medium frequencies which correspond with human speech. In response to this, the A-weighted noise level (or scale) has been developed. It corresponds better with people's subjective judgment of sound levels. This A-weighted sound level is called the "noise level" referenced in units of dB(A). Noise is measured on a logarithmic scale; a doubling of sound energy results in a three dB(A) increase in noise levels. However, changes in a community noise level of less than three dB(A) are not typically noticed by the human ear.¹ Changes from three to five dB(A) may be noticed by some individuals who are extremely sensitive to changes in noise. A 5.0 dB(A) increase is readily noticeable, while the human ear perceives a 10 dB(A) increase in sound level to be a doubling of sound.

Noise sources occur in two forms: (1) point sources, such as stationary equipment, loudspeakers, or individual motor vehicles; and (2) line sources, such as a roadway with a large number of point sources (motor vehicles). Sound generated by a point source typically diminishes (attenuates) at a rate of 6.0 dB(A) for each doubling of distance from the source to the receptor at acoustically "hard" sites and 7.5 dB(A) at acoustically "soft" sites.² For example, a 60 dB(A) noise level measured at 50 feet from a point source at an acoustically hard site would be 54 dB(A) at 100 feet from the source and 48 dB(A) at 200 feet from the source. Sound generated by a line source typically attenuates at a rate of 3.0 dB(A) and 4.5 dB(A) per doubling of distance from the source to the receptor for hard and soft sites, respectively.³ Sound levels can also be attenuated by man-made or natural barriers, as illustrated in Figure 22.

² Ibid., p. 97. A "hard" or reflective site does not provide any excess ground-effect attenuation and is characteristic of asphalt, concrete, and very hard packed soils. An acoustically "soft" or absorptive site is characteristic of normal earth and most ground with vegetation.
³ Ibid., p. 97.
FIGURE 22. NOISE ATTENUATION BY BARRIERS.
Solid walls, berms, or elevation differences typically reduce noise levels by 5.0 to 10.0 dB(A).⁴ Sound levels for a source may also be attenuated 3.0 to 5.0 dB(A) by a first row of houses and 1.5 dB(A) for each additional row of houses.⁵ The noise attenuation provided by typical structures in California is provided in Table 27.

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Noise Reduction - dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open Windows</td>
</tr>
<tr>
<td>Residences</td>
<td>12</td>
</tr>
<tr>
<td>Schools</td>
<td>12</td>
</tr>
<tr>
<td>Churches</td>
<td>20</td>
</tr>
<tr>
<td>Hospitals/Convalescent Homes</td>
<td>17</td>
</tr>
<tr>
<td>Offices</td>
<td>17</td>
</tr>
<tr>
<td>Theaters</td>
<td>20</td>
</tr>
<tr>
<td>Hotels/Motels</td>
<td>17</td>
</tr>
</tbody>
</table>

When assessing community reaction to noise, there is an obvious need for a scale which averages varying noise exposure over time and quantifies the result in terms of a single number descriptor. Several scales have been developed which address community noise levels. Those that are applicable to this analysis are the Equivalent Noise Level (L_{eq}) and the Community Noise Equivalent Level (CNEL). L_{eq} is the average A-weighted sound level measured over a given time interval. L_{eq} can be measured over any time period, but is typically measured for 1-minute, 15-minute, 1-hour, or 24-hour periods. CNEL is another average A-weighted sound level measured over a 24-hour time period. However, this noise scale is adjusted to account for some individual's increased sensitivity to noise levels during nighttime hours. A CNEL noise measurement is obtained after adding five decibels to sound levels occurring during the evening from 7 P.M. to 10 P.M., and ten decibels to sound levels occurring during the nighttime from 10 P.M. to 7 A.M. For example, the logarithmic effect of these additions is that a 60 dB(A) 24-hour L_{eq} would result in a measurement of 66.7 dB(A) CNEL.

Noise Analysis Methodology

The analysis of the existing and future noise environments presented in this EIR section is based on technical reports, noise level monitoring, and noise prediction modeling. Future noise levels for some stationary activities and equipment were estimated based on available technical reports, and literature which are cited in this EIR section. Noise modeling procedures involved the calculation of existing and future vehicular noise levels along individual roadway segments in the vicinity of the proposed project site. This was accomplished using the Federal Highway Administration Highway Noise Prediction Model (FHWA-RD-77-108). This model calculates the average noise level at specific locations based on traffic volumes, average speeds, roadway geometry, and site environmental conditions. The average vehicle noise rates (energy rates) utilized in the FHWA Model have been modified to reflect average vehicle noise rates identified for California by Caltrans. The Caltrans data show that California automobile noise is 0.8 to 1.0 dB(A) higher than national levels and that medium and heavy truck noise is 0.3 to 3.0 dB(A) lower than national levels. Traffic volumes utilized as data inputs into the noise prediction model were provided by the project traffic engineer and are consistent with the traffic and circulation analysis provided in Section 5.5, Transportation and Circulation of this EIR.

The analysis in this section addresses the existing and future noise environments on and off the proposed project site.

On-Site Methodology

The primary concern regarding on-site noise is the potential for proposed on-site land uses to be exposed to noise levels that exceed adopted or recommended thresholds (discussed later on in this EIR section). In essence, the analysis of on-site noise levels deals with the compatibility of the proposed on-site land uses with adjacent off-site land uses and with roadway traffic noise.

Off-Site Methodology

The assessment of off-site noise levels concerns itself with potential noise increases at other locations due to on-site activities and the addition of traffic generated by the proposed project. This section specifically focuses on impacts to existing and planned future noise-sensitive uses, or those uses that would be most sensitive to an increase in noise levels. These ‘sensitive locations’ are discussed later in this EIR section. At these locations, noise levels were modeled both with and without the project’s traffic volumes to determine those locations at which the project may have an impact on existing noise sensitive uses.

PLANS AND POLICIES FOR NOISE CONTROL

6 Rudolf W. Hendriks, California Vehicle Noise Emission Levels (Sacramento, California: California Department of Transportation, January 1987), NTIS, FHWA/CA/TL-87/03.
7 Ibid.
In advance of presenting the existing and future noise environments, and the thresholds of significance utilized in this analysis, plans and policies which pertain to the noise conditions affecting and affected by the proposed project are discussed below. These plans and policies include; (1) the La Quinta General Plan, and (2) the La Quinta Municipal Code.

La Quinta General Plan

The California Government Code requires that a noise element be included in the general plan of each county and city in the State. The local government goals, objectives, and policies for noise control are established by the noise element or some other element of the general plan and the passage of specific noise ordinances.

The Environmental Hazards Element of the La Quinta General Plan establishes policies for the compatibility of land uses in the City with noise. These policies have been used to set and adopt the noise standards identified in Table 28. These standards act as a guide regarding permissible interior and exterior noise levels for various land uses, as well as treatment provisions in areas exceeding 60 dB(A) CNEL.
Table 28
City of La Quinta Noise Standards by Land Use Type

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Noise Standards for Land Use Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior</td>
</tr>
<tr>
<td>Residential1</td>
<td><60 dB(A) CNEL in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Short duration events standards as approved by City Council.</td>
</tr>
<tr>
<td>Commercial, Employment and Manufacturing2</td>
<td><75 dB(A) CNEL</td>
</tr>
<tr>
<td></td>
<td>45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td>Open Space/Recreation</td>
<td></td>
</tr>
<tr>
<td>• Park & Playgrounds3</td>
<td><65 dB(A) CNEL</td>
</tr>
<tr>
<td></td>
<td>• Associated Buildings:</td>
</tr>
<tr>
<td></td>
<td>45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td>• Golf, Tennis, Stables2</td>
<td><70 dB(A) CNEL</td>
</tr>
<tr>
<td></td>
<td>• Associated Buildings:</td>
</tr>
<tr>
<td></td>
<td>45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td>Educational Facilities, Churches, Places of Worship2</td>
<td><60 dB(A) L_{eq} in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td></td>
<td>B. Short duration events standard as approved by City Council.</td>
</tr>
<tr>
<td>Hospitals and Convalescent Care Facilities2</td>
<td><60 dB(A) L_{eq} in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Average hourly 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td></td>
<td>C. Short duration events standard as approved by City Council.</td>
</tr>
<tr>
<td>Group Quarters, Caretaker Quarters1</td>
<td><60 dB(A) CNEL in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Average hourly 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td></td>
<td>C. Short duration events standard as approved by City Council.</td>
</tr>
<tr>
<td>Hotels/Motels2</td>
<td><70 dB(A) CNEL permitted</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Average hourly 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td></td>
<td><60 dB(A) CNEL desirable in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Average hourly 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
<tr>
<td>Executive Apartments2</td>
<td><60 dB(A) CNEL in outdoor living areas</td>
</tr>
<tr>
<td></td>
<td>A. Average daily <45 dB(A) CNEL in habitable rooms.</td>
</tr>
<tr>
<td></td>
<td>B. Average hourly 45-65 dB(A) L_{eq} depending on interior use.</td>
</tr>
</tbody>
</table>

Source: BRW, Inc., *Environmental Hazards Element of the La Quinta General Plan* (La Quinta, California: City of La Quinta, October 6, 1992), pp. 8-15 - 8-17.

Treatment in areas exceeding 60 dB(A) CNEL (existing or projected):
1. New residential development is prohibited. Exceptions are listed below:
 a. Limited infill within established neighborhoods.
 b. Mitigative measures implemented to attain both exterior and interior standards forecast conditions.
2. Allowed if mitigation provides attainment of interior standard with forecast conditions or noise study demonstrates attainment.
City of La Quinta Municipal Code

The City of La Quinta has also adopted noise standards in its Municipal Code which identify specific noise restrictions and exemptions for point, or stationary, sources of noise at noise sensitive and other nonresidential land use areas. Residential property, schools, hospitals, and churches are considered noise sensitive land uses, regardless of the land use district in which they are located. All other uses must comply with the other nonresidential standards. The Municipal Code limits the amount of noise that can be generated by such sources as radios, television sets and similar devices, powered equipment, loud parties or assemblages, and loud, unnecessary and unusual noise in various areas of the City. These standards are identified in Table 29. Section 6.08.050 of the La Quinta Municipal Code also limits construction activities to Monday through Saturday, and prohibits construction on Sundays or on public holidays. Hourly limitations also apply, with more time permitted for construction during the hotter months (May through September) and shorter work days the rest of the year. The noise levels generated during allowable construction hours are exempt from the noise standards identified in Table 29.

<table>
<thead>
<tr>
<th>Receiving Land Use</th>
<th>Noise Standard</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Sensitive</td>
<td>60 dB(A)</td>
<td>7:00 A.M. - 10:00 P.M.</td>
</tr>
<tr>
<td></td>
<td>50 dB(A)</td>
<td>10:00 P.M. - 7:00 A.M.</td>
</tr>
<tr>
<td>Other Nonresidential</td>
<td>75 dB(A)</td>
<td>7:00 A.M. - 10:00 P.M.</td>
</tr>
<tr>
<td></td>
<td>65 dB(A)</td>
<td>10:00 P.M. - 7:00 A.M.</td>
</tr>
</tbody>
</table>

Noise Limits. It shall be unlawful for any person at any location within the City to create any noise, or to allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person, when such noise causes the noise level, when measured on any adjacent property, to exceed:
1. The noise standard identified above for a cumulative period of more than 30 minutes in any hour;
2. The noise standard plus five dB(A) for a cumulative period of more than 15 minutes in any hour;
3. The noise standard plus 10 dB(A) for a cumulative period of more than five minutes in any hour;
4. The noise standard plus 15 dB(A) for a cumulative period of more than one minute in any hour; or
5. The noise standard plus 20 dB(A) for any period of time.
6. For purposes of this section, the term cumulative period means the number of minutes that a noise occurs within any hour, whether such minutes are consecutive or not.

Ambient Noise Level. If the ambient or background noise level exceeds any of the preceding noise categories, no increase above shall be permitted.
EXISTING NOISE ENVIRONMENT

Vehicular traffic is the dominant source of noise on, and in the vicinity of, the project site. Other sources of noise in the area that potentially affect noise levels on the project site include adjacent residential and nearby commercial uses. These noise sources are discussed below.

Roadway Noise

On-Site Roadway Noise

The proposed project site is located adjacent to SR-111 and Adams Street. Existing average on-site noise levels identified for these roadways are shown in Table 30. These noise levels are characteristic of an urbanized environment.

<table>
<thead>
<tr>
<th>Table 30</th>
<th>Existing On-Site Noise Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROADWAY</td>
<td>Distance from Center of Roadway</td>
</tr>
<tr>
<td></td>
<td>CNEL at 75 Feet</td>
</tr>
<tr>
<td>STATE ROUTE 111</td>
<td>71.3</td>
</tr>
<tr>
<td>• east of Adams Street</td>
<td></td>
</tr>
<tr>
<td>ADAMS STREET</td>
<td>57.1</td>
</tr>
<tr>
<td>• south of SR-111</td>
<td>55.9</td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Calculations are provided in Appendix H.

"""CNEL noise contour is located within the roadway lanes or within 75 feet of the roadway centerline.

Off-Site Noise Levels

Noise levels resulting from vehicular traffic were calculated at various off-site noise sensitive locations along roadway segments that would be affected by traffic volumes generated by the proposed project in order to characterize the existing ambient noise environment. The existing average noise levels identified through these calculations are shown in Table 31. The noise levels shown for these locations are calculated for the nearest edge of the nearest existing building to the roadway and take into consideration the existing walls between the roadways and the residential areas. Buildings located farther from the roadways would have lower noise levels. Based on the calculations, all of the locations have average noise levels that are within City of La Quinta standards for motor vehicle noise sources.
Table 31
Existing Off-Site Roadway Noise Levels at Noise Sensitive Locations

<table>
<thead>
<tr>
<th>ROADWAY</th>
<th>Noise Sensitive Land Uses</th>
<th>dB(A)</th>
<th>CNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS STREET</td>
<td>Existing Single Family, and Planned High Density Residential</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON STREET</td>
<td>Single Family Residential</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td>• south of SR-111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
<td>57.7</td>
<td></td>
</tr>
<tr>
<td>• south of 48th Avenue</td>
<td></td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>47TH AVENUE</td>
<td>Single Family Residential</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>• east of Washington Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48TH AVENUE</td>
<td>Single Family Residential</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td>• east of Washington Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• east of Adam Street</td>
<td></td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td>• east of Dune Palms Road</td>
<td></td>
<td>41.2</td>
<td></td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Calculations are provided in Appendix H. Noise levels are calculated for the nearest edge of the existing building to the roadway.

Point (or Stationary) Sources of Noise

The project site is presently vacant and does not generate noise. The primary source of noise presently affecting the site is generated by the adjacent roadways.

The project site is also affected by point sources of noise generated at the adjacent residential and commercial areas. Point sources of noise generated by these uses include people talking and yelling, doors slamming, lawn care equipment operation, stereo, domestic animals, etc. These sources of noise are, however, hardly perceptible compared to the noise levels generated on the adjacent roadways. The closest commercial use is a small used car lot located across SR-111 at the northwest corner of Dune Palms Drive and SR-111. This site generates very little noise. A community-scale commercial center is also located nearby, just northwest of the intersection of Adams Street and Highway 111. Activities at that site are normally imperceptible at the project site. The nearest residential uses are located in the Lake La Quinta neighborhood and are separated from the site by Adams Street and a solid masonry wall. Any noise levels generated by these uses are also hardly perceptible at the project site.

PROPOSED IMPROVEMENTS

The western part of the project site is proposed to be set back from both Adams Street and Highway 111 with a 20-foot wide and 50-foot wide landscape area, respectively, with a six-foot high decorative, solid
wall as an interior border. The wall would extend along the entire Adams Street landscape zone and along the Highway 111 setback, to the main entrance drive, and along the southern border of the site’s western portion. This wall would act as a noise barrier between the auto dealerships and nearby residential areas.

The Centre at La Quinta Specific Plan also identifies special features proposed for the design and operation of the auto dealerships. It is the intent of the Specific Plan that the layout and design of the vehicle service departments will be side entrance facilities. This design requirement would contain much of the noise generated by this type of activity. The Specific Plan states that the layout of individual dealerships shall orient the service department openings of the perimeter sites away from the residential areas to the south and west. The Specific Plan also prohibits the general use of public address systems at the auto dealerships. There are a variety of communications systems available that can replace public address-type devices for most applications. These alternatives include pagers and personal telecommunications systems. The Specific Plan also states that during the life of the project, other improvements in communications should be expected.

IMPACT ANALYSIS

Impact Significance Criteria

The *CEQA Guidelines* state that a project will normally have a significant effect on the noise environment if it will substantially increase the ambient noise levels for adjoining areas. However, this guideline does not define what a substantial increase in ambient noise is. Appendix G of the *CEQA Guidelines* does not provide an impact threshold for potential on-site noise impacts.

Therefore, the following thresholds of significance were developed for this noise impact analysis based on the plans and policies identified previously in this EIR section. These thresholds apply to both the project and cumulative project impacts.
On-Site Thresholds of Significance

The proposed project would result in a significant noise impact if on-site exterior locations would be exposed to noise levels above the City’s 75 dB(A) CNEL noise standards for commercial uses as identified in Table 28. Also, if components of the proposed project were to be subject to point source noise levels originating on or off the project site which are above the La Quinta Municipal Code noise standards identified in Table 29, a significant on-site noise impact would occur.

Off-Site Thresholds

Off-site noise thresholds consider both the City’s noise standards identified in Table 28, and community responses to changes in noise levels. Changes in a noise level of less than three dB(A) are not typically noticed by the human ear. Changes from three to five dB(A) may be noticed by some individuals who are extremely sensitive to changes in noise. A five dB(A) increase is readily noticeable. Based on this information, the following thresholds have been developed for this analysis:

1. An increase of five dB(A) or greater in noise level that occurs from project-related activities would be considered significant if with-project noise levels are 60 dB(A) CNEL or greater at noise sensitive locations.

2. An increase of three dB(A) or greater in noise level that occurs from project-related activities which results in noise levels exceeding the City’s 60 dB(A) CNEL noise standard for noise sensitive locations.

Project Impacts

The proposed project would result in the generation of both construction-related noise during the project development phase and operational noise associated primarily with increased vehicle trips and on-site activities. The potential noise impacts associated with the project are discussed below.

Construction Noise Impacts

Development of the proposed project would require site preparation (e.g., grading) and construction (e.g., infrastructure, buildings, and cleanup) of the proposed improvements. These activities typically involve the use of heavy equipment such as scrapers, tractors, loaders, and concrete mixers. Trucks would be used to deliver equipment and building materials, and to haul away waste materials. Smaller equipment

8 *Highway Noise Fundamentals*, p. 81.
such as jack hammers, pneumatic tools, saws, and hammers would also be used throughout the site during the construction phase. This equipment would generate both steady state and episodic noise that would be heard both on and off the project site.

The U.S. Environmental Protection Agency (U.S. EPA) has compiled data regarding the noise generating characteristics of specific types of construction equipment. This data is presented in Figure 23. As shown, noise levels generated by heavy equipment can range from approximately 68 dB(A) to noise levels in excess of 100 dB(A) when measured at 50 feet. However, these noise levels would diminish rapidly with distance from the construction site at a rate of approximately six dB(A) per doubling of distance. For example, a noise level of 68 dB(A) measured at 50 feet from the noise source to the receptor would be reduce to 62 dB(A) at 100 feet from the source to the receptor, and would be further reduced by another six dB(A) to 56 dB(A) at 200 feet from the source to the receptor.

Noise levels generated during the construction phase would primarily affect the occupants of nearby residential uses immediately to the west of Adams Street (Lake La Quinta community). The closest homes within this residential area are located no less than 125 feet from the construction area. This residential area, and the residential area to the south in the Rancho La Quinta development, are shielded from outside noise levels by solid masonry walls. These walls, and the distance of the project site from these homes would substantially reduce construction noise levels of heavy grading equipment from approximately 95 dB(A) to approximately 79 dB(A). Construction activities would also be restricted on a daily basis in accordance with §6.08.050 of the La Quinta Municipal Code. These restrictions are considered capable of maintaining construction noise at less than significant levels. However, a person who is home during the day and noise sensitive may find the condition to be disturbing. This could lead to complaints.

Operational Noise Impacts

Noise impacts would also result from operation of the proposed project. These impacts would primarily result from project-generated vehicular traffic and the increased human activity on the site. Each of these potential noise impacts are discussed separately below.

Traffic Noise

As stated in the Traffic and Circulation section of this EIR, the proposed project is projected to generate approximately 22,490 vehicle trips per day when completed and fully operational (reference Section 5.5 of this EIR).
FIGURE 23. NOISE LEVELS OF TYPICAL CONSTRUCTION EQUIPMENT.
On-Site Noise Levels

The long-term future (year 2005) noise levels on the project site are identified in Table 32. None of the proposed structures are located within 75 dB(A) CNEL noise contours for SR-111 and Adams Street. The 75 dB(A) noise contour for SR-111 would fall within the proposed landscape setback area along SR-111. The 75 dB(A) contour for Adams Street would also fall within the proposed landscape setback along that street frontage. Therefore, on-site noise levels generated by vehicle traffic would not be considered significant.

<table>
<thead>
<tr>
<th>ROADWAY</th>
<th>Distance from Center of Roadway</th>
<th>CNEL at 75 Feet</th>
<th>75 CNEL</th>
<th>70 CNEL</th>
<th>65 CNEL</th>
<th>60 CNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE ROUTE 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• east of Adams Street</td>
<td></td>
<td>73.4</td>
<td></td>
<td>162</td>
<td>503</td>
<td>1,564</td>
</tr>
<tr>
<td>• east of Project Entrance</td>
<td></td>
<td>74.0</td>
<td></td>
<td>186</td>
<td>579</td>
<td>1,801</td>
</tr>
<tr>
<td>ADAMS STREET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• south of SR-111</td>
<td></td>
<td>62.3</td>
<td></td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
<td>60.7</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Calculations are provided in Appendix H. Predicted noise levels assume no attenuation from proposed barriers. When present, intervening walls, terrain, or structures can reduce these noise levels by 5 to 10 dB(A).

Off-Site Noise Levels

The project's effects on off-site noise levels are assessed using a methodology similar to that used in Section 5.5, Transportation and Circulation in which the analysis is based on the difference between the future traffic volumes without the project, and the future-plus-project traffic volumes. The noise levels that would be generated by these traffic volumes at the anticipated first year of full project occupancy, (year 2005) are identified in Table 33.

As shown, the increases in noise levels at the analyzed areas would be 4.7 dB(A) CNEL or less at all locations. The resulting noise levels at all locations would not exceed the City's noise standards for residential land uses. Increases less than 5.0 dB(A) CNEL would not exceed the off-site mobile source impact significance criteria for this analysis. Therefore, no significant noise impacts would occur at the noise sensitive locations in the vicinity of the project site.
Table 33
Predicted Future Off-Site Roadway Noise Levels at Noise Sensitive Locations (dB(A) CNEL)

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment</th>
<th>Noise Sensitive Land Uses</th>
<th>Future Noise</th>
<th>With Project Noise</th>
<th>Increase in Noise</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS STREET</td>
<td>• south of 47th Avenue</td>
<td>Existing Single Family, and Planned High Density Residential</td>
<td>50.7</td>
<td>53.2</td>
<td>2.5</td>
<td>Not Significant</td>
</tr>
<tr>
<td>WASHINGTON STREET</td>
<td>• south of SR-111</td>
<td>Single Family Residential</td>
<td>59.4</td>
<td>59.6</td>
<td>0.2</td>
<td>Not Significant</td>
</tr>
<tr>
<td></td>
<td>• south of 47th Avenue</td>
<td>Single Family Residential</td>
<td>59.1</td>
<td>59.1</td>
<td>0.0</td>
<td>Not Significant</td>
</tr>
<tr>
<td></td>
<td>• south of 48th Avenue</td>
<td>Single Family Residential</td>
<td>59.5</td>
<td>59.8</td>
<td>0.3</td>
<td>Not Significant</td>
</tr>
<tr>
<td>47TH AVENUE</td>
<td>• east of Washington Street</td>
<td>Single Family Residential</td>
<td>45.8</td>
<td>50.5</td>
<td>4.7</td>
<td>Not Significant</td>
</tr>
<tr>
<td>48TH AVENUE</td>
<td>• east of Washington Street</td>
<td>Single Family Residential</td>
<td>50.3</td>
<td>52.4</td>
<td>2.1</td>
<td>Not Significant</td>
</tr>
<tr>
<td></td>
<td>• east of Adams Street</td>
<td>Single Family Residential</td>
<td>46.1</td>
<td>49.1</td>
<td>3.0</td>
<td>Not Significant</td>
</tr>
<tr>
<td></td>
<td>• east of Dune Palms Road</td>
<td>Single Family Residential</td>
<td>47.1</td>
<td>49.7</td>
<td>2.6</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Calculations are provided in Appendix H. Noise levels are calculated for the nearest edge of the existing building to the roadway.

Operational Noise Impacts Other Than Traffic Noise

Residents of the homes to the west and south of the site would also experience a change in their existing noise environment due to the increased human activity on the site as a result of daily operation. Most of this noise would come from the proposed auto dealerships. According to The Centre at La Quinta Specific Plan, service departments typically operate between the hours of 7:00 A.M. and 6:00 P.M., five or six days per week. The change in noise levels during these hours is not readily quantifiable, but a qualitative assessment can be made and is presented below.

Residents of the Lake La Quinta neighborhood could possibly detect noise associated with the operation of tools and equipment in the dealership service departments. Portions of the project site with the greatest potential to be heard by nearby residents are located on Lots 5 through 7, since these lots are closest to that neighborhood. As discussed previously however, the layout and design of the vehicle service departments will include side entrance facilities. This design requirement would contain most of the noise generated by this type of activity within the service facilities themselves. The Specific Plan states that the layout of individual dealerships shall orient the service department openings of the perimeter sites (i.e., lots 5 to 8) away from the residential areas to the south and west.
The Specific Plan also prohibits the general use of public address systems at the auto dealerships as a means of minimizing noise impacts on neighboring properties. There are a variety of communications systems available that can replace public address-type devices for most applications. These alternatives include pagers and personal telecommunications systems. Therefore, no noise impacts associated with public address systems would occur. Those residents in close proximity to the site would likely detect noise associated with human activity, such as people talking, car doors slamming, auto alarms, and tires squealing. Noise would be generated by medium and heavy trucks making approximately daily deliveries to the site. Additional noise would be generated in the parking area through the use of parking lot vacuums that typically occur before dawn, and other maintenance activities, such as trash pick-up, that usually occur in early morning hours. The frequency of such activities will be determined after the project is operational. Landscape maintenance noise is not expected to be a problem, since these activities normally occur in daylight hours when people are already awake, and the noise would tend to blend in with traffic noise. The proposed six-foot high block wall to be constructed along the western and southern site boundary, and the existing solid walls bordering the nearest residential areas, would be sufficient to break the line-of-sight between the residential uses and the activity at the project site. Consequently, the potential impacts of such noise is not considered significant.

Cumulative Impacts

Cumulative noise impacts would primarily occur as a result of increased traffic on local roadways due to the proposed project and other developments in the area. Therefore, cumulative traffic-generated noise impacts have been assessed based on the difference between the existing traffic volumes and the year 2005 with project traffic volumes. The results of this comparison are identified in Table 34.

As shown, the increases in noise levels at the analyzed areas would be 8.8 dB(A) CNEL or less at all locations. Increases of more than 5.0 dB(A) CNEL would be considered substantial. However, the resulting noise levels at all locations would not exceed the City’s noise standards for residential land uses. Therefore, no significant cumulative roadway noise impacts would occur at the noise sensitive locations in the vicinity of the project site.
Table 34
Predicted Cumulative Off-Site Roadway Noise Levels at Noise Sensitive Locations (dB(A) CNEL)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS STREET</td>
<td>Existing Single Family and Planned High Density Residential</td>
<td>49.0</td>
<td>53.2</td>
<td>4.2</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON STREET</td>
<td>Single Family Residential</td>
<td>58.0</td>
<td>59.6</td>
<td>1.6</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• south of SR-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• south of 47th Avenue</td>
<td></td>
<td>57.7</td>
<td>59.1</td>
<td>1.4</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• south of 48th Avenue</td>
<td></td>
<td>58.1</td>
<td>59.8</td>
<td>1.7</td>
<td>Not Significant</td>
</tr>
<tr>
<td>47TH AVENUE</td>
<td>Single Family Residential</td>
<td>44.4</td>
<td>50.5</td>
<td>6.1</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• east of Washington Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48TH AVENUE</td>
<td>Single Family Residential</td>
<td>48.9</td>
<td>52.4</td>
<td>3.5</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• east of Washington Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• east of Adams Street</td>
<td></td>
<td>40.3</td>
<td>49.1</td>
<td>8.8</td>
<td>Not Significant</td>
</tr>
<tr>
<td>• east of Dune Palms Road</td>
<td></td>
<td>41.2</td>
<td>49.7</td>
<td>8.5</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

Source: Impact Sciences, Inc. Calculations are provided in Appendix H. Noise levels are calculated for the nearest edge of the existing building to the roadway.

MITIGATION MEASURES

Construction Impacts

Although construction-related impacts are not considered significant, the following measures are recommended to reduce the noise impacts associated with grading and construction activities to the greatest extent practical.

N1. Between May 1 and September 30, all construction activity on the project site shall only occur between the hours of 6:00 A.M. and 7:00 P.M. Monday through Friday, and from 8:00 A.M. to 5:00 P.M. on Saturday, and shall be prohibited on Sundays and public holidays. Between October 1 and April 30, all construction activity on the project site shall only occur between the hours of 7:00 A.M. and 5:30 P.M. Monday through Friday, and from 8:00 A.M. to 5:00 P.M. on Saturday, and shall be prohibited on Sundays and public holidays.

N2. Implement appropriate additional noise reduction measures to reduce the amount of noise that could affect the Lake La Quinta neighborhood, such as changing the location of stationary
construction equipment, shutting off idling equipment, equipping heavy equipment with noise muffling devices, notifying nearby residents in advance of construction work, and installing temporary acoustic barriers around stationary construction noise sources such as portable generators.

Operational Impacts

The proposed project's operational impacts are not considered significant. Therefore, no mitigation measures are required or recommended.

UNAVOIDABLE SIGNIFICANT IMPACTS

No unavoidable significant noise impacts would occur as a result of the proposed project.
INTRODUCTION

SB 901 and Water Supply Planning

Senate Bill 901 (SB 901) was enacted during the 1995-1996 Regular Session of the California Legislature to require a discussion in EIRs for large-scale projects, of issues involving water supply and demand. Information for this discussion is to be provided by the water agency to the Lead Agency who is preparing the EIR. In many cases, this information is contained in an Urban Water Management Plan pursuant to California Water Code Section 10610 (also referred to as Assembly Bill 797). A number of mandatory elements are identified for inclusion in the plan, including: an estimate of past, current and projected water use; identification of conservation measures currently adopted and being practiced; a description of alternative conservation measures which would improve the efficiency of water use with an evaluation of their cost and environmental or any other significant impacts; a schedule for the implementation of proposed actions indicated by the plan, as well as other elements. In 1995, the Legislature added further requirements that the urban water management plan must also include a water supply and demand assessment of the reliability of water service to customers during normal, dry, and critically dry runoff years. The water supply and demand assessment must compare the total water supply available to the water supplier with the total projected water use over a 20-year period, which must be analyzed in five-year periods for each type of runoff scenarios. The management plans must also be updated every five years, to occur in years ending in 0 and 5. CVWD conducts regular water supply planning efforts to address all of these requirements, but does not currently have an urban water management plan. It is in the process of preparing a basin-wide water management plan, which will fulfill those requirements.

SB 901 directs water agencies to provide such information in response to a Notice of Preparation of an EIR (NOP) for applicable projects. If water officials don’t reply after the 30-day NOP response period, the Lead Agency may assume that water officials have no information to submit. Although the local water agency, the Coachella Valley Water District (CVWD), did not respond to the NOP for this project, several CVWD staff members did provide information concerning their water supply planning efforts and water conservation programs for discussion in this EIR. This section is based, for the most part, on consultations with CVWD staff, with additional information obtained from the La Quinta General Plan, and the project architect.
ENVIRONMENTAL SETTING

Water Supply and Distribution

Water for potable as well as irrigation purposes is provided throughout La Quinta and the entire Coachella Valley by the Coachella Valley Water District (CVWD). CVWD serves an area of approximately 1,000 square miles within the Counties of Riverside, Imperial and San Diego. The main source of potable water provided to La Quinta is from an underground aquifer beneath the valley. Irrigation water is supplied from this same aquifer and from the Colorado River via the Coachella Canal, and is consumed generally in the area from Indio and La Quinta south to the Salton Sea.

In mid-1995, CVWD provided domestic water service to a total population of 160,725, with 64,290 active meter services and total water sales of 79,920 acre feet.¹ The water storage and distribution system consisted of 79 active wells and 52 reservoirs, with a total storage capacity of 74.4 million gallons. Water was delivered through 1,479 miles of pipelines, with 9,866 fire hydrant connections. Average water use, per person (residential use), was 226 gallons per day.

Recent studies by CVWD have found that 63 percent more water is being drawn from the valley’s underground supplies than is being replaced annually. This is because the natural supply of water that reaches the aquifer is not keeping pace with the basin outflow due primarily to heavy consumption by the expanding resort-recreation economy of the valley and growing permanent resident population.² If this trend continues without change, the “overdraft” condition is anticipated to increase to 80 percent by the year 2015. An overdraft rate of about 17 percent occurs in the upper basin of the valley, which encompasses part of La Quinta, including the project site, while the rate in the southern basin has been running at 190 percent of the annual recharge. If nothing is done to change these conditions, these rates are predicted to increase to 32 percent annually in the upper basin, and to 215 percent in the lower basin, by the year 2015. Given current rates of overdraft, the total, basin-wide overdraft would reach 190,000 acre feet/year by 2015. Water shortages could occur well before the year 2015. CVWD has estimated that approximately 220 acres of ponds would be needed for additional groundwater recharge in the lower valley by 2015.

City of La Quinta Water System

The City’s 1992 General Plan identified a current city-wide water consumption at that time of approximately 8.93 million gallons per day. CVWD supplies water throughout La Quinta from 13 wells located throughout the city. To obtain high quality soft water for potable use, active wells are perforated at depths ranging from 500 to 900 feet, although water is normally encountered at 120 to 150 feet. Water quality analyses conducted at these sites have indicated that quality levels meet state standards.

Potable water is stored in five reservoirs that serve the pressure zones in the city. This high quality water is distributed to end users via an underground system with lines ranging in size from six to 36 inches. CVWD Reservoir No. 5704, with a storage capacity of 150,000 gallons, and Well No. 574 are located near the project site, at the northwest corner of Highway 111 and Adams Street. An 18-inch water main has been installed in Adams Street along the western site boundary, and a 12-inch main has been installed within Highway 111, along the northern site boundary.

Water Conservation Programs

Both the CVWD and the City of La Quinta encourage water conservation through the use of xeriscaping techniques to reduce water consumption through irrigation. CVWD will provide the services of a water management specialist during the landscaping/irrigation system plan check process, to help develop an efficient, low-water volume landscaping program for new developments.

The City of La Quinta has adopted a set of stringent water efficient landscaping regulations, as Chapter 8.13 of the City of La Quinta Municipal Code. The purpose of these regulations is to establish minimum water efficient landscape requirements for newly installed and rehabilitated landscapes, and to implement the minimum requirements of the State of California Water, Conservation and Landscaping Act, Statutes of 1990, Chapter 1145. The proposed project would be subject to the provisions of Chapter 8.13, pursuant to Section 8.13.030 of the Municipal Code.

Numerous standards are specified in Chapter 8.13 for the preparation of landscape and irrigation plans, to ensure that minimal water waste occurs and that the landscape system is as water efficient as feasible, in terms of basic water consumption requirements and for long-term maintenance. A performance standard for irrigation efficiency is set at a minimum of 0.625. “Irrigation efficiency” means the measurement of the amount of water beneficially used divided by the amount of water applied.3 Irrigation efficiency is derived from measurements and estimates of irrigation system characteristics and management practices.

The more well designed and maintained landscape/irrigation systems often achieve an irrigation efficiency of higher than 0.625.\(^4\)

Section 8.13.030(C)(6)(b)(ii) states that dual water distribution systems are required to be installed in landscape areas to allow for the current and future use of recycled water, unless a written exemption is granted by the CVWD stating that recycled water meeting all health standards is not available and will not be available in the foreseeable future. CVWD staff have indicated that recycled water is not currently available in the vicinity of the project site and is not considered feasible for this project. They have also indicated that imported irrigation water, from the Colorado River via the Coachella Canal, is not readily available in this area and is not considered a viable alternative source of irrigation water for this project.\(^5\)

To ensure that newly installed landscapes are maintained in a water efficient manner over time, Section 8.13.030(C)(9) of the Municipal Code requires that project sites be audited by certified landscape irrigation auditors at least once every five years and that proof of same must be provided to the City.

ENVIRONMENTAL IMPACT ANALYSIS

Impact Significance Criteria

As defined in Appendix G of the CEQA Guidelines, project impacts related to water consumption are normally considered significant if they cause or contribute to:

- Substantial degradation of water quality
- Contamination of a public water supply
- Substantial degradation or depletion of ground water resources
- Substantial interference with ground water recharge
- Activities which result in the use of large amount of water
- Use of water in a wasteful manner

These are generalized criteria that cover a full range of potential impacts to public water supplies. For the purpose of this EIR, a more focused set of criteria has been established, which are more appropriate means of evaluating project impacts in relation to the unique features of this project, as well as the characteristics of the water supply and distribution system that is operated by CVWD in this area. The criteria by which this project’s water consumption impacts will be evaluated are defined as:

\(^4\) Ibid.

\(^5\) Mr. John A. Corella, Principal Domestic Water Engineer, Coachella Valley Water District. Interview February 28, 1997.
a. Water demand exceeds available water supply

b. Construction of new water supply or distribution facilities or capacity-enhancing improvements to existing facilities is required to meet the water demands of the project

c. Water consumption practices are wasteful and/or conflict with adopted water conservation programs and policies

Project Impacts

Project water demand was estimated on the basis of CVWD's generalized water demand planning factor of five-to-seven acre-feet/year/acre (af/yr/ac). This factor includes both potable and irrigation water uses. Based on a rate of six af/yr/ac, the proposed project would consume roughly 522 af/yr of water. Of this total, the project architect has estimated that each of the auto dealer sites would consume roughly 4,000 gallons per day, including interior plumbing, car washing, and irrigation.\(^6\) As noted in Section 4.0 of this EIR, this project's proposed development intensity is well below the maximum that could be permitted in accordance with the City General Plan policies for a Mixed/Regional Commercial land use designation. This project would consume less total water than was contemplated as part of the City's maximum buildout scenario as discussed in the General Plan. CVWD has also indicated that this project's land use mix and intensity and estimated water demand are within the growth projections previously developed by CVWD for this part of the Coachella Valley.\(^7\) Finally, CVWD indicated that the project's water demand would not exceed available water supplies. Project impacts, therefore, would not be significant with respect to criterion a., defined above.

Based on the proposed mixture and intensity of land uses that would be allowed by the proposed specific plan, and the development concepts currently envisioned for this project, CVWD has indicated that it appears that no new water supply or distribution facilities and no capacity-enhancing improvements to existing facilities would be required to provide adequate water service for this project.\(^8\) CVWD has also indicated, however, that other land uses that normally consume a much higher volume of water, such as a hotel or golf course, could necessitate capacity upgrades of off-site facilities. Preliminary discussions between the CVWD and project engineers have determined that, at this stage of planning, adequate water service can be provided from the existing 18-inch water main along Adams Street. The existing 12-inch water main along Highway 111 is not adequate to provide required fire flows to this project; installation

\(^6\) Mr. Tom Walker, Principal, Walker/Raincourt & Associates. March 12, 1997.
\(^7\) Mr. John A. Corella. February 28, 1997.
\(^8\) Mr. John A. Corella. February 28, 1997.
of an 18-inch water main along the entire Highway 111 project site frontage would be needed to provide the required water flow for this project.9 Please refer to Exhibit 10, in the Specific Plan (Appendix A), for an illustration of the proposed on-site water main plan, which includes an extension of the 18-inch main from Adams Street, along the project’s proposed interior loop street, to connect to a new 18-inch water main to be constructed along the entire Highway 111 frontage of the project site. Project impacts would not, therefore, be significant with respect to criterion b., defined above.

The proposed project also includes a 150’ X 150’ water well site to be dedicated to the CVWD, in the southwestern corner of the project site. This site area and location were selected on the basis of consultations between the project applicant and CVWD and will satisfy CVWD’s standards for setting aside land for future well site needs. No well improvements would be constructed as part of this project; CVWD would install well facilities in the future, when needed. This project would construct a perimeter security wall around the well site, along with a drive approach to connect the site to Adams Street.

No specific water conservation program is included in the proposed project, although the proposed landscape concept (Section 2.10.3 of the Specific Plan) would emphasize water efficient plant materials and minimize turf areas that typically require a substantial amount of irrigation to maintain. This section of the Specific Plan is consistent with the City and CVWD’s water conservation programs, as described previously. As noted earlier, this project will be subject to the provisions of the City’s Water Efficient Landscaping regulations, as specified in Chapter 8.13 of the Municipal Code. Proper compliance with these standards will ensure that the proposed project’s irrigation system uses a minimal volume of water, with minimal waste.

No elements of the proposed project have been identified which would be expected to use water in a wasteful or inefficient manner. It is possible, however, that future development plans may include high water consumption operations such as a large water fountain display or a car wash. Such operations can and routinely are designed to incorporate recycling mechanisms that will significantly reduce the amount of water consumed. Closed-loop water recirculation systems are often provided in auto dealer developments, to reduce total water consumption. Therefore, with respect to criterion c., defined above, the project would not have a significant impact, provided that high volume water uses include efficient recycling mechanisms in their water systems.

Cumulative Impacts

Total population throughout the Coachella Valley is projected by SCAG to reach approximately 588,000 by the year 2015, from a 1990 total of 215,000. Total employment is also projected to increase to 177,000 by

9 Mr. John A. Corella. February 28, 1997.
the year 2015, up from 87,000 in 1990. If these levels of growth occur, together with additional resort-recreation oriented development, water demand will also continue to grow accordingly. Such growth will place continuing pressure on the CVWD to develop new water supplies and to develop sources of replenishment for the underground water source that has historically been the primary source of domestic water for the valley. If water conservation, water supply and water replenishment efforts do not keep pace with growth in water demand, water shortages could occur at various times and in various places within the Coachella Valley. Such events would be considered significant cumulative impacts with respect to water use.

CVWD’s system of water storage and distribution facilities will also need to be expanded to serve new growth. Cumulative environmental and financial costs of expanding the water system are expected to be substantial, given the large scale of the CVWD service area (1,000 square miles) and the extensive network of facilities required to meet the demands of the District’s water customers. Analysis of environmental impacts and development of mitigation measures for any significant impacts would be conducted by the CVWD at the time future water supply, storage or distribution facilities are being planned. No significant impacts are anticipated, therefore, relative to expansion of the CVWD water system.

MITIGATION MEASURES

Project-Level

W1. To ensure that future land uses do not include activities which unnecessarily waste water or which consume exceptional amounts of water, the City will direct contractors to consult with the CVWD to develop appropriate water conservation measures for both landscaping/irrigation requirements and plumbing controls.
Cumulative

W2. The City of La Quinta will continue to cooperate with CVWD strategies to manage regional water supplies and distribution facilities. Examples of such strategies currently being implemented or under consideration as part of the CVWD’s water management planning program include:

- To meet the projected regional water demand for the year 2015, CVWD has estimated that another 220 acres of ponds for recharge would be needed in the lower valley. This would allow for percolation of approximately 82,000 acre feet of water per year. If such ponding areas cannot be found in the lower valley, the needed replenishment could be made up by converting current well users (farmers, fish farmers, golf courses and duck clubs) to canal water or other surface sources in the lower valley.

- Additional replenishment could be achieved through importation of another 41,000 acre feet to supplement groundwater recharge efforts in the upper valley, conserving an additional 25,000 acre feet of water after initial use for fish farms, increasing reclaimed water use on golf courses by 11,000 acre feet, implementing conservation measures on golf courses to save an additional 9,000 acre feet and improving agricultural conservation to save another 5,000 acre feet.

It is anticipated that most of the money required to implement and operate CVWD’s water plan would come through assessments collected from pump owners for the cost of replacing the amount of water they extract from the basin. Major groundwater users in the upper valley, including the CVWD, have been paying such fees for nearly 20 years.

UNAVOIDABLE SIGNIFICANT IMPACTS

No significant project-level water use impacts have been identified. If CVWD’s efforts to expand water supplies and increase replenishment of overdrafted aquifers, together with various water conservation programs administered by CVWD and local governments throughout the valley are not as successful as intended, significant cumulative water supply impacts, i.e., water shortages, could be unavoidable.
5.9 SOLID WASTE DISPOSAL

INTRODUCTION

Solid waste disposal is an issue of local, regional and statewide importance. In the past, solid waste was simply collected and disposed of in landfills. However, this traditional method of landfill disposal is becoming increasingly problematic, as landfills near or reach their capacity and the ability to find and develop new landfill sites is complicated by numerous environmental, regulatory and political concerns. Today, in response to diminishing landfill space and the difficulty in approving new landfills, alternative methods of collection, transfer, disposal, and source reduction and recycling are prominent methods of dealing with solid waste. The Riverside County Waste Resources Management District has the responsibility to develop plans and strategies to accommodate solid waste generated throughout the county in a safe and cost effective manner.

PLANS AND POLICIES FOR SOLID WASTE MANAGEMENT AND DISPOSAL

A consequence of California’s growth has been an increase in solid waste generation and corresponding reductions in the capacities of existing landfills as a place to dispose of such wastes. Landfills are often seen as undesirable land uses and, consequently, new landfills and expansions of capacity have proven very difficult to approve. This situation has focused public attention on what is believed to be dwindling landfill capacities, and has stimulated legislation in the State of California to reduce the amount of solid wastes entering existing landfills, and to reuse solid waste through recycling efforts, pursuant to the California Integrated Waste Management Act.

California Integrated Waste Management Act

The California Integrated Waste Management Act of 1989 (AB 939) requires every city and county in the State to prepare a Source Reduction and Recycling Element (SRRE) to its Solid Waste Management Plan that identifies how each jurisdiction will meet the mandatory State waste diversion goals of 25 percent by the year 1995 and 50 percent by the year 2000. The purpose of AB 939 is to “reduce, recycle, and reuse solid waste generated in the State to the maximum extent feasible.” Noncompliance with the goals and timelines set forth within AB 939 can be severe, as the bill imposes fines of up to $10,000 per day on jurisdictions (cities and counties) not meeting these recycling and planning goals.

The term “integrated waste management” refers to the use of a variety of waste management practices to safely and effectively handle the municipal solid waste stream with the least adverse impact on human health and the environment. AB 939 established waste management prioritization as follows:
5.9 Solid Waste Disposal

- Source Reduction
- Recycling
- Composting
- Energy Recovery
- Landfilling
- Household Hazardous Waste Management

California Integrated Waste Management Board Model Ordinance

Subsequent to enactment of AB 939, additional legislation was passed to assist local jurisdictions in accomplishing the goals of AB 939. The California Solid Waste Reuse and Recycling Access Act of 1991 (§42900-42911 of the Public Resources Code) directs the California Integrated Waste Management Board (CIWMB) to draft a "model ordinance" relating to adequate areas for collecting and loading recyclable materials in development projects. If by September 1, 1994, a local agency did not adopt its own ordinance based on the CIWMB model, the CIWMB model took effect for that local agency. The County of Riverside did not adopt its own ordinance, and the CIWMB model ordinance has been in effect in the County since September 1, 1994. The City has also not adopted its own ordinance, but has been complying with the State’s provisions. The City also has provisions in its Zoning Ordinance that are consistent with the model ordinance.

The model ordinance is used by the County as the basis for imposing recycling conditions on new development projects and on existing projects that add 30 percent or more to their existing floor area. The model ordinance requires that any new development project\(^1\) for which an application is submitted on or after September 1, 1994 include "adequate, accessible, and convenient areas for collecting and loading recyclable materials.” For subdivisions of single family detached homes, recycling areas are required to serve only the needs of the home within that subdivision. The model ordinance also requires recycling areas to be:

- compatible with nearby structures;
- secured and protected against adverse environmental conditions;
- clearly marked, and adequate in capacity, number and distribution;
- in conformance with local building code requirements for garbage collection access and clearance;
- designed, placed and maintained to protect adjacent developments and transportation corridors from

\(^1\) The ordinance defines a development project as "a project for which a building permit is required for a commercial, industrial, or institutional building, marina, or residential building having five or more living units, where solid waste is collected and loaded and any residential project where solid waste is collected and loaded in a location serving five or more living units.”
adverse impacts, such as noise, odors, vectors, or glare;
- in compliance with Federal, State, or local laws relating to fire, building, access, transportation, circulation, or safety; and
- convenient for persons who deposit, collect, and load the materials.

Riverside Countywide Integrated Waste Management Plan

The Final Draft Riverside County Integrated Waste Management Plan (CIWMP) is the County’s latest effort in developing plans for the long term management of solid waste. Prepared by the Riverside County Waste Resources Management District, this plan includes such approaches as source reduction, recycling and composting programs, household hazardous waste management programs, and public education awareness programs. The plan concludes that landfilling will remain an integral part of the waste management system and calls for the County’s support for the development of disposal facilities outside of the County. Presently, the Final Draft CIWMP identifies adequate landfill space for the County through the year 2008. The CIWMP is expected to be approved by the Riverside County Board of Supervisors in 1997.

Coachella Valley Solid Waste Management Authority Joint Powers Agreement

Local landfills within the Coachella Valley could reach capacity as early as the year 2002 (see discussion later in this section). As a result, solid waste generated and collected within the area is likely to be transported to more distant landfills. In order to minimize the costs and environmental impacts of this change, cities within the Coachella Valley have participated with the County in a planning task force that evaluated possible benefits of a transfer station/materials recovery facility (MRF) that would separate solid waste for transfer in large capacity vehicles to disposal sites. This task force completed its work and has submitted its report to all city councils within the area for consideration and action. The Coachella Valley Solid Waste Management Authority Joint Powers Agreement (JPA) is the organizational structure recommended by the task force to enable cities of the Coachella Valley and Riverside County to construct and operate a transfer station/MRF in the near future. The City of La Quinta is considering this recommendation.

ENVIRONMENTAL SETTING

Solid Waste Generation
Approximately 28,500 tons of solid waste are generated on an annual basis in the City of La Quinta. Of this total, approximately 33 percent is green waste (e.g., grass and landscape clippings), 20 percent is inert solids such as rocks and concrete, 12 percent is wood wastes, and 12 percent is paper products.

The City of Las Quinta does not contain industries which produce or handle toxic or hazardous materials as a product or by-product of manufacturing processing. The City does have businesses and activities which utilize industrial chemicals and hazardous materials on a regular basis such as dry cleaners, automotive service and repair shops, agricultural operations, and business and households which use commercially available cleaning products.

The project site is presently vacant and does not contribute solid waste to the city or county waste stream.

Solid Waste Collection

The solid waste collection services for the City of La Quinta are operated and administered by Waste Management of the Desert, a private hauler, under contract to the City. Waste Management of the Desert is responsible for the collection and disposal of non-hazardous, mixed municipal waste. Industrial chemicals and hazardous materials such as used motor oil and solvents are collected by private operators which compete for business and contract with the individual generator of the waste for its collection and disposal. The City of La Quinta is also affected by the transport of hazardous materials generated in other areas by trucks on Highway 111.

Because the project site is undeveloped, Waste Management of the Desert does not collect and remove refuse from the project site.

Solid Waste Disposal

Approximately 1.3 million tons of solid waste are expected to be generated in Riverside County in 1997. This will be accommodated in the 12 active landfills within the County. All but one of these landfills are operated by the Riverside County Waste Management District. The El Sobrante Sanitary Landfill, located between Corona and Lake Elsinore, operates in accordance with agreements between the owner, Western Waste Management, and the District, which collects the user fees for the landfill. There are no active, permitted disposal facilities within any of the 24 cities in the County. There are also no facilities for disposal of hazardous materials within the County. The industrial chemicals and hazardous material waste generated in the county are transported to specialized facilities for the collection, separation and recycling and/or transfer to out-of-county and out-of-state landfills.
The solid waste generated and collected within the City of La Quinta that is not recycled, reused or otherwise diverted from landfill disposal is currently taken to the Coachella Sanitary Landfill located to the east of the City of Indio, as illustrated in Figure 24. In May of this year, however, this landfill is scheduled to close. At that time, the City’s solid waste will be disposed of at the Edom Hill Sanitary Landfill located northwest of Cathedral City, as shown in Figure 24. This landfill is currently permitted to accept a maximum of 1,200 tons (2,000 cubic yards) of solid waste per day. The landfill currently averages approximately 514 tons (761 cubic yards) per day. Based on its current permits and capacity, this landfill could potentially operate until the year 2006. However, if waste streams from the Coachella and Mecca II Sanitary Landfills (scheduled to close in the year 2000) are diverted to the Edom Hill Sanitary Landfill, its closure date could occur as early as the year 2002.

IMPACT ANALYSIS

Impact Significance Criteria

The CEQA Guidelines state that a project will normally have a significant affect on the environment if it will breach published national, state, or local standards relating to solid waste or litter control. Appendix G of the CEQA Guidelines does not identify any specific quantitative or qualitative standards for determining the significance of a new project’s solid waste generation.

Solid waste collection service and landfill capacity already exist in the project area; therefore, for the purpose of this EIR, the project would cause a significant solid waste (including hazardous waste) impact if it does not implement measures to reduce the amount of solid waste entering landfills in accordance with State, County, and City standards.

Project Impacts

Construction Impacts

Site preparation and construction activities are estimated to generate a total of approximately 7,902 tons of construction wastes over its build-out period based on an approximate generation rate of 90 tons per acre for the 87.8-acre site. These waste materials are expected to be typical construction debris, including wood, paper, glass, plastic, metals, cardboard, and green wastes.

2 This rate was provided by Jim Harter of the Newhall Ranch Company, based on his firm’s years of experience developing similar types of projects in non-desert areas in Los Angeles County. Total ‘green wastes’ generated during construction of this project would be less than the average of Los Angeles County projects, since the...
FIGURE 24.
LANDFILLS SERVING THE COACHELLA VALLEY

project site is comprised of desert terrain, with relatively little vegetation cover, compared to non-desert land in Los Angeles County.

5.9-6

The Centre at La Quinta Draft EIR
April 1997
Construction activities could also generate household-type hazardous waste products, such as paints, solvents, and petroleum product wastes (used oils, empty fuel can containers). The wastes generated would result in an incremental and intermittent increase in solid waste disposal at the Edom Hill Sanitary Landfill and hazardous waste recycling and transfer facilities. Using common recycling practices in effect today, this amount could be reduced by at least 50 percent to 3,955.5 tons.3 To facilitate construction recycling efforts, the City of La Quinta encourages developers to recycle the maximum amount of construction waste possible and publishes a pamphlet which identifies companies that recycle materials such as asphalt, brick, cardboard, concrete, green waste, metal, roofing, and wood waste among others. Because construction wastes would occur only once, they would have a short-term impact on the solid waste disposal system. Given this temporary effect, and that a significant portion of typical construction wastes can be readily recycled, construction period solid waste impacts would not be considered significant, unless no efforts to reduce landfill disposal are undertaken.

\textbf{Operational Impacts}

Operation of the proposed project would result in the continuous and long-term generation of solid waste. Each of the proposed uses would generate a mix of solid waste that primarily includes packaging materials and possibly food service materials. Using a generation rate of 0.0051 tons per year per square foot for auto dealers, services, and repairs, and 0.0024 tons per year per square foot for general retail, the proposed project would generate approximately 2,362.5 tons of solid waste per year or 6.47 tons per day at buildout.4 Because most of this waste would be composed of packaging materials (cardboard and plastic), mixed papers, and scrap ferrous materials, common recycling practices in effect today could reduce this amount by approximately 80 percent, to 475 tons per year or 1.3 tons per day.5 If the project’s solid wastes are successfully recycled and reused to divert at least 50 percent of the total from landfill disposal, the project would be complying, on an individual basis, with the goals specified in AB 939, and the annual and daily amounts of solid waste generation would not be considered significant.

Pursuant to the CIWMB “Model Ordinance” and the City’s Zoning regulations, the project’s final site plan(s) would be required to provide adequate areas for collecting and loading recyclable materials in concert with City of La Quinta efforts and programs to reduce the volume of solid waste entering landfills. The proposed Specific Plan does not include any specific solid waste management plans or programs, however, the proposed master site plan could readily be refined to provide areas for collecting and loading recyclables as part of the final design process.

3 Jim Harter, Newhall Ranch Company.
4 These rates are derived from the Ventura County Solid Waste Management Department’s Guidelines for the Preparation of Environmental Assessments for Solid Waste Impacts.
5 Ibid.
The Centre at La Quinta Specific Plan proposes a "desert oasis" landscaping theme that emphasizes water efficient materials and minimizes the use of turf areas. These types of plants produce much less waste than traditional ornamental landscaping that grows quickly and requires frequent maintenance. This is considered a source reduction measure by the City of La Quinta.

Industrial chemicals and hazardous materials are expected to be utilized and generated as waste materials on the project site. The auto dealerships service areas are expected to utilize and generate waste materials such as used tires, used motor oil, used automotive batteries, enamel paints, anti-freeze, and solvents in their daily operations. Each of these materials are typically collected and transported to specialized private facilities in Riverside County, other Counties in the State, and other states for recycling and/or transfer to out-of-county and out-of-state landfills. The auto dealerships and commercial center would also utilize commercially available materials such as drain openers, toilet bowl cleaners, ammonia-based cleaners, floor and furniture polishes, enamel or oil-based paints, and pesticides, herbicides, and fungicides in daily cleaning and landscape maintenance activities. The improper disposal of these readily available materials would constitute a significant impact if disposed of within the County's non-hazardous sanitary landfills. Any food service establishment developed within the commercial center could also generate grease trap waste which is not permitted in most sanitary landfills. Riverside County landfills no longer accept grease trap wastes or other liquid wastes. The proposed project's grease trap and liquid wastes would, therefore, need to be transported to specialized facilities for the collection, separation and recycling or transfer to out-of-county and/or out-of-state landfills, as is the case with all other "hazardous" wastes.

Cumulative Impacts

The Riverside County Waste Resources Management District has the responsibility to develop plans and strategies to accommodate solid waste generated by uses throughout the county in a safe and cost effective manner. These plans consider the cumulative impact of projected growth within the county. The Riverside Countywide Integrated Management Plan indicates that the existing landfills within the County could accommodate the volume of waste that is forecast to be generated through the year 2008. After that, additional capacity would be needed to accommodate existing as well as the future residents and businesses. Because adequate landfill space within Riverside County is forecast only three years beyond the estimated first year of full project occupancy (2005), the project's cumulative impacts are considered significant. It is, however, reasonable to assume that the market forces that drive the waste disposal industry will put pressure on the industry and governmental agencies to continually identify new economically feasible means of waste disposal in the future to accommodate future growth.
MITIGATION MEASURES

Construction Impacts

The following measures are recommended to reduce the amount of solid waste disposed of at landfills during the construction of the proposed project:

SW1. Contractors shall separate recyclable construction waste materials in separate bins, and shall arrange for transport of recyclable materials to facilities which accept the materials. A list of recyclable construction materials and recycling facilities is available, and shall be obtained, from the City of La Quinta. All recyclable materials shall be recycled.

SW2. Builders competing for construction contracts shall be required to include proposals for the use of building products made of recycled materials.

Operational Impacts

To ensure that the project's long-term solid waste generation does not have a significant impact on the City and County programs to satisfy the requirements of AB 939, the following measures are recommended to maximize the amount of diversion of solid waste from landfills:

SW3. Green waste generated on the project site shall be treated in such a way as to avoid disposal in landfills. This may be accomplished, for example, by composting either on-site or at approved facilities and mulching for use on- and off-site.

SW4. Prior to the issuance of building permits for each phase of the project, a solid waste management program shall be approved for that portion of the site or for larger areas if more efficient, by the City of La Quinta. These programs shall maximize the recycling potential of packaging materials (cardboard), mixed papers, and scrap ferrous materials, and shall include designated areas for trash separation bins which are accessible to waste haulers, and identification of materials that are to be recycled. The following provisions shall be considered in the preparation of the plans:

• Locate recycling/separation areas in close proximity to dumpsters for non-recyclables, elevators, loading docks, and primary internal and external access points. (From CIWMB Model Ordinance)
• Locations of recycling/separation areas shall not conflict with any applicable federal, state or local laws relating to fire, building, access, transportation, circulation, or safety.

• Locate recycling/separation areas so they are convenient for those persons who deposit, collect, and load the recyclable materials. (From CIWMB Model Ordinance)

• Place recycling containers/bins so that they do not block access to each other.

• Solid waste collection/recycling areas are to be compatible with nearby structures, secure, protected against adverse environmental conditions, clearly marked, adequate in capacity, number and distribution, and contain a sufficient number of bins, to serve the recycling needs of the development. (From CIWMB Model Ordinance)

• Design and construct collection/recycling areas to accommodate front-loader packing trucks, including maneuvering room. (From CIWMB Model Ordinance)

• Design and construct driveways and/or travel aisles with adequate width and maneuverability space for unobstructed garbage collection vehicle access and clearance. (From CIWMB Model Ordinance)

• Post signs at all access points of the recycling areas that clearly identify all recycling and solid waste collection and loading areas and the materials accepted therein. (From CIWMB Model Ordinance)

SW5. Prior to occupancy of each phase of the project, the managers of the auto dealerships and the commercial center shall prepare programs for the proper storage, collection, identification, and disposal of industrial chemical and hazardous material wastes. These programs shall be prepared and implemented to the satisfaction of the Riverside County Waste Resources Management District, the Riverside County Fire Department, and the City of La Quinta.
UNAVOIDABLE SIGNIFICANT IMPACTS

If the project's construction and long-term solid wastes are recycled, reused and otherwise diverted from landfills as much as practical through implementation of the mitigation measures identified above, significant solid waste impacts would be avoided. The project's cumulative impacts would be considered unavoidably significant until additional landfill space is identified for the County beyond the year 2008.
5.10 PUBLIC SERVICES

INTRODUCTION

The Initial Study prepared for the proposed project indicated that commercial development on the project site could cause an increased frequency of calls to the Riverside County Fire and Sheriff's Departments. In order to assess potential impacts to these public services, correspondence and interviews were conducted with Fire Safety Specialist Tom Hutchison of the Riverside County Fire Department,1 Captain Ronald F. Dye, Station Commander of the Riverside County Sheriff's Department's Indio Station and Lieutenant Denver Pittman of the Riverside County Sheriff's Department.2 This section incorporates information gathered through these consultations.

ENVIRONMENTAL SETTING

Fire Protection and Paramedic Services

Fire protection services are provided to the City of La Quinta under contract with the Riverside County Fire Department. There are presently two fire stations located in the City of La Quinta: Station 32 at 78136 Avenue 52, and Station 70 at 54001 Madison Avenue. Station 32 is equipped with one 1,250 gallon per minute (gpm) fire engine and one 1,500 gpm fire engine. Station 70 is equipped with one 1,250 gpm fire engine and one 1,000 gpm fire engine. Each fire engine is staffed with one Company Officer and one firefighter. This staffing is augmented by volunteers as each station has a volunteer fire company. One Chief Officer also responds with each alarm. The Fire Department also operates four additional stations in surrounding communities which results in overlapping service areas.

Paramedic services are provided in La Quinta by Springs Ambulance Service, which operates from County Fire Station 70 on Madison Street.

Fire Stations 32 and 70 provide first alarm and secondary response service to the vicinity of the proposed project site. These stations are both located approximately five miles from the project site, with response times of six minutes. Station 55, located at 44900 El Dorado Drive in Indian Wells, is located three and a half miles from the project site and has also been identified as a first response station for the project area. This station has a response time of five minutes to the project area and is equipped with one 1,000 gpm

1 Interview with Tom Hutchison, Riverside County Fire Department, Indio, California, February 18, 1997, and correspondence with Impact Sciences, March 18, 1997.
2 Interview with Ronald F. Dye and Denver Pittman, Riverside County Sheriff's Department, Indio, California, February 18, 1997.
telesquirt fire engine. Station 31, located at 78400 Avenue 42 in Bermuda Dunes, is identified as an additional secondary response station. It operates one 1,500 gpm fire engine.

The Riverside County Fire Department does not impose a fee on new development within the City of La Quinta. However, fees are collected for plan checks and inspections undertaken by the Department.

Police Protection Services

Police protection services are provided to the City of La Quinta under contract by the Riverside County Sheriff’s Department. The City of Quinta and other areas of the eastern Coachella Valley are served by the Department’s station located at 82-695 Dr. Carreon Boulevard, in Indio. The station serves an area of approximately 845 square miles and 40,000 people. The western Coachella Valley is served by a station in Palm Desert.

The Sheriff Department is presently contracted to provide 17 sworn officers, one non-sworn officer, and support personnel to the City of La Quinta. The 17 sworn officers consist of 14 deputies that work around the clock in three one-man patrol units, one two-man target team which focuses on problem areas, and one school resource officer monitors the City’s high school. The patrol deputies presently provide emergency response times of approximately five minutes throughout the City. During an emergency situation, where more officers than the City has patrolling are needed, the Sheriff’s Department will utilize additional personnel from its Indio station and, when necessary, its Palm Desert station.

IMPACT ANALYSIS

Impact Significance Criteria

Appendix G of the CEQA Guidelines states that a project will normally have a significant effect on the environment if it will interfere with emergency response plans or emergency evacuation plans. In addition to this criteria, this EIR also considers the impact of the project on current service levels and considers the impact of the project to be significant if the proposed project would have a significant impact on the public service environment if the project would increase the demand for service beyond the ability of the Fire and Sheriff’s Departments and local ambulance service to provide timely and adequate service to emergency calls, or if the project prevents these agencies from providing adequate service to the rest of their service areas.
Project Impacts

Fire Protection and Paramedic Services

During the construction phases, a large amount of wood framing would occur on the project site. In association with the framing operations, electrical, plumbing, communications, and ventilation systems would be installed in each structure. Although rare, fires do occur at construction sites, and it is expected that the electrical, plumbing, and mechanical systems for the development would be properly installed during framing operations (they would be subject to County and City codes and inspection by County and City inspectors prior to drywalling). In addition, construction sites would also be subject to Coachella Valley Water District and Riverside County Fire Department standards relative to water availability and Fire Department fire fighting equipment accessibility standards. Therefore, adherence to County and City codes and requirements during construction would reduce the potential for fire hazards at the project site during construction to less than significant.

According to the Fire Department, the proposed project includes no unique or especially hazardous activities which could have a greater potential to cause fires or result in serious accidents than other similar developments found elsewhere in La Quinta. The proposed auto dealership and commercial uses are expected to create the typical range of fire service calls that other such uses create, including structure fires, garbage bin fires, car fires, electrical fires, etc. All such fires can be adequately suppressed with the fire equipment and equipment found at the County's fire stations, with no change to response times or service levels within the City. In addition, the La Quinta Municipal Code requires all buildings 5,000 square feet and larger to be equipped with automatic fire sprinklers to help extinguish fires before major damage might occur. Based on the proposed master site plan (see Figure 4 in Section 3.0) and the proposed Specific Plan development standards, most, if not all, buildings constructed as part of the project would be subject to this requirement. The auto dealerships would use substances and chemicals considered to be hazardous by the State of California. Such chemicals include, but are not limited to, gasoline in above and/or below ground storage tanks, paints, and solvents, and are expected to be typical of those commonly found at automotive uses such as gasoline stations and repair shops. These businesses would be required to comply with Federal and State standards relative to their use and disposal, and would be subject to regular inspections by the County Fire Department's hazardous materials unit. According to the Fire Department, the auto dealerships are not expected to present any unique fire protection requirements that could not be served by existing fire stations.

According to the County Fire Department, no additional fire department resources would be needed to address this project's fire prevention and fire suppression needs. According to the Fire Department,
compliance with standard project design and construction requirements will avoid potentially significant impacts.

The project could also increase the demand for paramedic services due to the increased human activity at the site. This increase would likely occur due to traffic accidents, medical problems, injuries to shoppers and employees, and fire-related injuries. However, paramedic response times and service are adequate in the project area and would remain so with the project.

Based on this analysis and the opinions of the Fire Department, the proposed project would not increase the demand for service beyond the ability of the Fire Department and Springs Ambulance Service to provide timely and adequate service to emergency calls and would not prevent the Fire Department and Ambulance Service from providing adequate service to the rest of their service areas. Therefore, the project’s potential impacts are not considered significant.

Police Protection Services

During construction and operation of the proposed project, an increase in the frequency of emergency and routine calls to the Sheriff’s Department is expected to occur. Anticipated crime and safety issues during project construction include theft of building materials and construction equipment, malicious mischief, graffiti and general vandalism. Potential crimes expected to occur during project operation include vehicle burglary, motor vehicle theft, commercial burglary, conflicts between vehicle and pedestrian traffic, shoplifting, and transient loitering. The Sheriff’s Department would also respond to vehicle accidents at, and in the vicinity of, the site. Based on experience and calls for response to incidents at the La Quinta Town Center, the Sheriff’s Department anticipates that the proposed project would increase the number of calls by 10 to 15 per week. The Department did not express any specific concerns regarding the proposed auto dealership mall or any other particular aspect of the proposed project. They also indicated that they could accommodate this increase in the number of service calls without any significant impact to their present levels of service.

The Sheriff’s Department reviews project designs at the plan check stage. Landscaping, lighting, doors and locks are examples of design treatments that can be utilized to reduce criminal access and improve visibility for Sheriff patrol units. The Sheriff’s Department must approve the plans prior to permit issuance. Compliance with the Department’s recommendations for crime prevention through project design and would increase project security to an acceptable level.
Although the exact types of uses on the commercial/retail portion of the site are not known at this time, it is possible that stores that would be open 24-hours per day could be developed. These facilities are often the target of crimes during late evening and early morning hours when customer and vehicular traffic is very light. Without the implementation of aggressive theft deterrent systems such as surveillance cameras, frequent money drops into the store’s safe, and staffing with more than one employee during nighttime hours, the potential for successful crimes at these types of businesses is considered high.

Cumulative Impacts

Fire Protection Services

The Riverside County Fire Department has stated that it does not anticipate significant impacts to fire protection services from cumulative development in the City of La Quinta and surrounding communities within the Department’s service area in the near future. Existing fire stations would meet increases in demand until the number of emergency calls begins to approach the threshold level at which local stations can effectively provide fire protection to the area. As the Highway 111 corridor becomes more developed, the need for additional fire stations will likely arise. Tentative plans are in process for a third fire station to be constructed in the City of La Quinta on the north side of Highway 111, but a site and time of development for this proposed facility have not yet been determined.

Police Protection Services

The Sheriff’s Department anticipates that it can accommodate the increased demands for service as cumulative development occurs throughout the eastern Coachella Valley. The existing Indio Station has been designed to accommodate anticipated growth through the year 2015 and should be adequate for years after that. The Kohl Ranch development of approximately 10,000 homes in the thermal airport area would have the greatest effect on the Sheriff’s Department’s resources in the eastern Coachella Valley due to its location and large population. However, the Department has recommended that the developers of that project construct a substation for quick response to emergencies. This would reduce the potential cumulative demand for services to less than significant levels.
MITIGATION MEASURES

Fire Protection Services

Compliance with the following mandatory measures already required by existing County and/or City regulations would ensure that potential impacts are mitigated to a level that is less than significant:

PS1. All on-site water distribution facilities shall be constructed in accordance with Coachella Valley Water District and Riverside County Fire Department standards.

PS2. Fire hydrants shall be provided at the site to the satisfaction of the Riverside County Fire Department.

PS3. Adequate access and turning radii for fire trucks and other fire fighting apparatus shall be incorporated into project design plans to the satisfaction of the Riverside County Fire Department.

PS4. All on-site structures shall be built to conform with criteria contained within the Uniform Fire Code and in accordance with Riverside County Fire Department and City of La Quinta standards.

PS5. During the construction and operations phases, activities involving the use and storage of highly flammable substances (i.e., fuels and solvents) shall be conducted in accordance with Riverside County Fire Department standards.

Police Protection Services

The following measures are recommended by the Riverside County Sheriff’s Department to ensure that potential impacts are mitigated to a level that is less than significant:

PS6. Areas such as streets, security walls and parking area shall be well lit to dissuade would-be criminals from targeting these area for illegal activities.

PS7. All doors shall have an industrial quality key and latch system. All exterior doors shall have deadbolt locks.

PS8. All delivery doors shall be equipped with a peephole for delivery identification purposes.
PS9. To avoid creating convenient hiding places for would-be criminals, shrubbery found in the site interior shall be trimmed to a height of three feet or less. In addition, product displays and vegetation shall be kept clear of exterior windows to avoid blocking the visibility into store interiors by passing patrol cars.

PS10. Design parking and unloading areas to avoid creating traffic problems.

PS11. To reduce the response times of emergency vehicles, addresses shall be at least eight inches tall and contrast with the background.

PS12. Install closed circuit, remote video surveillance systems to monitor the security of auto dealership sites.

PS13. Any future proposal to develop a personal goods or vehicle storage business shall include a closed circuit, remote video surveillance system to monitor site security.

The following additional measure is recommended by this EIR to deter the potential for crimes at businesses that would be open 24 hours per day:

PS14. Any future proposal to develop a business that would be open for 24 hours shall include the following security measures:

a. Installation of a closed circuit video monitoring system. Security cameras shall be located above cash register areas, entrances and exits and walk-in coolers. Signs shall be posted to advise patrons that the premises are being monitored by 24-hour surveillance cameras.

b. Staff the operation with more than one employee during nighttime hours.

c. Employees shall conduct frequent money drops into the building’s safe.

UNAVOIDABLE SIGNIFICANT IMPACTS

None are anticipated.
ENVIRONMENTAL SETTING

La Quinta General Plan Policies Regarding Scenic Values

Several statements and policies were formulated during development and adoption of the 1992 La Quinta General Plan that express the City’s goals for preserving scenic views and scenic features, and to create a desirable community image. They are expressions of the community’s shared values concerning those environmental features deemed visually significant and worth preserving, and also provide guidance for the design of streets and development projects to achieve the desired community image. Those General Plan statements and policies that are considered most relevant to this project area are identified, verbatim, below.

Environmental Conservation Element

Page 6-1, Existing Setting: “Approximately 30 percent of the City is comprised of the undeveloped Coral Reef and Santa Rosa Mountains...These mountains contribute significantly to the city’s visual...resources.” The mountains provide a dramatic framing element for the City as a result of their close proximity, steep topography and varied vegetation.

GOAL 6-1: “The scenic resources of the Coral Reef and Santa Rosa Mountain lasting in perpetuity.”

Objective 6-1.1: “The City shall utilize a variety of alternative means to ensure that the scenic resources of the Coral Reef and Santa Rosa Mountains are preserved in perpetuity.”

Policy 6-1.1.2: “The City shall utilize street corridors to provide scenic vistas of the Coral Reef and Santa Rosa Mountains. Landscaped setbacks along streets shall be required pursuant to Policy 3-4.1.11 in the Circulation Element of the General Plan. The setback areas are as follows:

- Highway 111 - 50 feet
- Other Major Arterials - 20 feet
- Primary Arterials - 20 feet
- Secondary Arterials - 10 feet
- Collector Streets - 10 feet”
Circulation Element

GOAL 3-4: A circulation system which maintains the urban design character and identity desired by the citizens of La Quinta.

Objective 3-4.1: The General Plan shall ensure the creation of an attractive streetscape that will further enhance the identity and character of La Quinta.

Policy 3-4.1.2: Primary image corridors shall be defined as streets in the roadway network which are the major urban design statements of the City. Primary image corridors shall consist of boulevard streets with raised, landscaped medians and heavily landscaped areas within and contiguous to the street rights-of-way. Primary image corridors shall include landscape themes which are reminiscent of La Quinta’s agricultural past and desert environment. Primary image corridors may include vertical landscape elements such as palm trees complemented with a shade-producing understory of canopy trees, such as indigenous, drought tolerant desert species. More water intensive understory canopy trees, such as various citrus species, should be used sparingly in nodes at key locations as highlights and reminders of past agricultural activities. Ground plane landscape materials should evoke a lush image through the use of drought tolerant, low maintenance plant species. Turf should be used in a manner consistent with citrus trees—sparingly and in high visibility locations. Primary image corridors shall include street traffic signals, street lighting systems, street furniture, bus shelters, street name signs, and noise berms/barriers which are designed in a coordinated and consistent theme unique to La Quinta. At key intersections, primary image corridors shall include treatments which may include special roadway paving, hardscape/screen wall arrangements and displays of public art.

Policy 3-4.1.3: Primary image corridors shall include the following roadways:

- Washington Street
- Jefferson Street
- Highway 111
- Fred Waring Drive
- Calle Tampico
- Eisenhower Drive (from Calle Tampico to Washington Street)

Policy 3-4.1.4: Secondary image corridors shall be defined as streets in the roadway network which are the secondary urban design statements of the City. Secondary image corridors shall consist of streets with raised, landscaped medians and landscaped areas within and contiguous to the street right-of-way.
Secondary image corridors shall be consistent with primary image corridors relative to similar landscape materials, street traffic signals, street lighting system, street furniture, bus shelter and street name signs. However, secondary street image corridors shall emphasize the use of lower profile indigenous canopy trees, accentuated with the use of citrus trees in various nodes. The use of taller, vertical landscape elements shall be de-emphasized and shall occur in nodes, primarily at street intersections.

Policy 3-4.1.5: “Secondary image corridors shall include the following roadways:

- Miles Avenue
- Dune Palms Road (south of the Coachella Valley Stormwater Channel)
- Adams Street (south of the Coachella Valley Stormwater Channel)
- Avenue 48
- Avenue 50
- Avenue 52
- Eisenhower Drive (south of Calle Tampico to Avenida Bermudas)"

Development Standards

The City of La Quinta Municipal code establishes a variety of standards to control the visual character and design features of new development as a direct means of implementing the General Plan policies identified above. Standards have been codified in Section 9.90 of the Municipal Code to control building height and mass, setbacks from public rights-of-way and interior property lines, parking and signs, fences and walls and landscaping and screening, in non-residential districts. City staff are responsible for ensuring that new development applications conform to these standards, which can vary between zoning districts. The subject property is in the Regional Commercial (CR) Zone, with a non-residential overlay along Highway 111. In this zone district, building heights are limited to a maximum of 50 feet, with no more than four stories, and a maximum floor area ratio (FAR) of 0.35. A minimum building and landscape setback of 50 feet from the ultimate right-of-way of Highway 111 is required. Required building setback along Adams Street is 20 feet from the ultimate right-of-way, of which at least 10 feet must be landscaped.

Visual Character of Project Vicinity

The project site is located along the Highway 111 corridor, which bisects the City from east to west. This corridor contains a mixture of vacant parcels and commercial development, on both sides of the highway. Development that has occurred is low-scale, with buildings generally of one-story construction or larger
“big box” retail structures arranged around an interior parking lot area, separated from Highway 111 by extensive landscape buffers.

Immediately west of the project site on Adams Street, a well maintained landscape setback covers a short slope that rises to a solid perimeter wall along the eastern edge of the Lake La Quinta residential community. Palm trees and scattered citrus trees, remains of a former small-scale citrus ranch, comprise the visual landscape immediately east of the project site. Vacant, sand-dune covered land dominates the visual foreground immediately north of the site, along Highway 111. Vacant, sand dune- covered land is immediately south, separating the project site from the unimproved extension of 48th Avenue and the landscaped/walled northern edge of the Rancho La Quinta golf/residential community.

Existing Views of Project Site From Highway 111

In accordance with the General Plan policies listed earlier, views across the project site from Highway 111 are considered the most important view corridor for this project. Existing views of the project site and background features are illustrated in Figures 25 and 26.

View From Westbound Highway 111

This view was photographed from a location along the north side of the highway, just west of Dune Palms Road, to capture the view as a westbound motorist approaches the project site from the east. If the viewer is traveling in a car at 50 miles per hour, this view would be very brief, lasting for several seconds. The motorist would pass by the entire site in approximately 30 seconds at this speed, unless it is necessary to slow or stop at the Adams Street intersection.

As shown in Figure 25, the Santa Rosa Mountains form a prominent and dramatic backdrop to this scene. The project site appears in the middle of the view as a relatively narrow horizontal element that separates views of the mountains from the roadway surface. A small mounded area in the left edge of the view, that rises above adjoining ground, is the most prominent landscape feature on-site.

View From Eastbound Highway 111

The view from eastbound Highway 111 was photographed from a location along the south roadway shoulder, approximately 10 feet east of Adams Street. This is the view that greets motorists as they approach the project site at Adams Street. If a motorist is stopped at the intersection of Adams/Highway 111 while waiting for a signal change, this view could last for perhaps 30 seconds to
INSERT FIGURE 25
View of Project Site From Westbound Highway 111
5.11 Aesthetics

INSERT FIGURE 26
View of Project Site From Eastbound Highway 111
a minute. If the signal is at the green phase for traffic along Highway 111, and the motorist does not have
to slow down approaching Adams Street, then the motorist would pass by the entire site frontage in about
30 seconds. At a speed of 50 miles per hour, this first view of the site would be very brief, lasting for
several seconds.

As shown in Figure 26, views along this segment of the highway are framed by vacant, sand dune covered
land comprising the ground plane on both sides, with a row of power poles along the left (north) side and
power poles, billboards and palm trees as distinct vertical elements along the right (south) side. Faintly
visible in the distant background are outlines of the Indio Hills. If the viewer continues to scan across the
project site from left to right, towards Adams Street, the hummocky, sand dune covered project site
dominates the view. Distant views of the Coral Reef and Santa Rosa Mountains come into the right edge
of the view.

ENVIRONMENTAL IMPACT ANALYSIS

Impact Significance Criteria

Appendix G of the CEQA Guidelines states that a project will normally have a significant effect on the
environment if it will "...have a substantial, demonstrable negative aesthetic effect." This is a general
criteria that is often clarified and more specifically defined with respect to local plans and policies that
focus on locally significant scenic views and scenic features. Pursuant to the La Quinta General Plan
policies and zoning development standards identified earlier in this section, the following criteria have
been established to assess the significance of the proposed project’s aesthetic impacts.

• Substantial, negative alteration of scenic vistas of the Coral Reef or Santa Rosa Mountains
• Substantial conflict with or deviation from the urban design policies and development standards
 established for primary and secondary image corridors

Project Impacts

Substantial, Negative Alteration of Scenic Vistas of the Coral Reef or Santa Rosa Mountains

To assess the project’s potential impact on views of the Coral Reef and Santa Rosa Mountains, a
conceptual, computerized simulation of the potential building massing that would occur along Highway
111 was prepared (Figures 25 and 26). These simulated views are an approximate representation of the
developed site image, based on the size and placement of buildings shown on the proposed master site.
plan (Figure 4 in Section 3.0 of this EIR) and the setback and building height standards included in the proposed specific plan. They are not intended to portray the precise and complete visual character of the developed site, but are intended to give the reader a picture of how the massing of major structures would affect motorists' views as they approach the site along Highway 111. (Please note that the wall as shown along Highway 111 in the northeastern boundary of the project site is not proposed by this applicant, but is illustrated as a "worst-case" extension of the wall along the northern boundary of the auto mall area.)

Because the northeastern part of the project site is within the direct line-of-sight from the westbound lanes of the highway toward the mountains, virtually any development plan with buildings located near the northern edge of the site would substantially obstruct the mountain view, particularly if the buildings are more than one-story in height. As shown in Figure 25, in the view from westbound Highway 111, the northern-most row of buildings proposed in Phase 3 of the project (future retail shopping center) would obstruct a significant amount of the currently available scenic vista of the distant Santa Rosa Mountains. The long, rectangular building proposed in the northeastern corner of the site would completely block views of the mountains. This building was assumed to be 50 feet high for the view simulation, since that is the maximum height allowed under the proposed specific plan. As one of the larger free-standing commercial buildings in the project, it is more likely that it would be higher than the smaller outparcel buildings, which were assumed to be 30 feet high for this analysis. Narrow glimpses of the mountains would remain between the buildings along the highway frontage. As the motorists continues westward, the amount of view obstruction would diminish, since the larger buildings in the project are sited several hundred feet south of the highway and would appear lower in profile than the smaller buildings located closer to the road and which dominate the viewer's frame of reference.

Although the view of the developed site illustrated in Figure 25 would last for only a few seconds as the motorists travels past the site, the extensive obstruction of the presently expansive scenic view of the Santa Rosa Mountains would be considered a significant impact. This could be reduced to an acceptable level by limiting the height of buildings in the front half of the site, with greater spacing between buildings that are sited along the edge of the landscape setback. This would allow for preservation of views of the most prominent upper elevation features of the mountains, including the horizon-defining ridgeline.

As shown in the view from eastbound Highway 111 at Adams Street (Figure 26), scenic vistas of the mountains would be preserved along the Adams Street corridor and no significant impact would occur as a result of the proposed building heights, locations and massing in the western half of the project site.
Substantial conflict with or deviation from the urban design policies and development standards established for primary and secondary image corridors

Landscape Setbacks

Proposed landscape concepts for the Highway 111 and Adams Street frontages are illustrated in Figures 27 and 28, respectively. As shown, the landscape setbacks for the highway frontage would be 50 feet from the road right-of-way, which satisfies the minimum requirement established for this primary image corridor. The landscape setback along Adams Street is proposed at 20 feet from the street right-of-way, which satisfies the minimum requirement for this secondary image corridor. Landscape palettes for these highly visible frontages are proposed in a desert oasis theme, with low-profile, monument-style business identification signs to provide an image that is consistent with the design policies established for these corridors in the La Quinta General Plan Circulation Element (policies 3-4.1.2 and 3-4-1.4). The proposed landscape setbacks along Highway 111 and Adams street would not conflict with the design policies and standards established by the City’s General Plan and zoning regulations.

A continuous, six foot high, solid masonry wall would be constructed at the interior edge of the landscape setback, along both frontages. Along the Highway 111 setback, the wall would extend only from Adams Street to the main entrance road. The wall would provide an effective screening of the auto mall area loading, storage, parking and lower building exteriors, as viewed from Highway 111 and Adams Street. It is also noted, however, that the wall would extend in straight lines for long distances along both frontages and could, therefore, conflict with Section 9.150L.3.b. of the La Quinta Municipal Code. This code section states that screening walls should not be constructed in long, straight stretches, to prevent visual monotony. As an alternative to the proposed straight line walls, a meandering wall, use of offsets, periodic variations in materials, texture, or colors and similar measures could be employed to avoid a monotonous visual effect.

Building Height and Intensity

The proposed specific plan (see Appendix A) indicates that building heights will conform to the standards of the CR (Commercial Recreation) zone district. As stated earlier in this section, these standards permit building heights of up to four stories/50 feet. This provision of the specific plan is, therefore, consistent with the height limits of the CR district. As discussed under item A., above, however, buildings greater than one-story/25 feet in height in the northeast quadrant of the site would have a significant view-obstructing impact on scenic vistas of the distant Santa Rosa Mountains.

Total proposed building area is limited to 675,000 square feet over the entire site, pursuant to the land use standards set forth in the proposed specific plan (see Section 2.50, in Appendix A of this EIR). This
FIGURE 27
Proposed State Route 111 Landscape Concept - Plan and Section Views
FIGURE 28
Proposed Adams Street Landscape Concept - Plan and Section Views
equates to a floor area ratio (FAR) of 0.18, well below the maximum FAR of 0.35 permitted by the La Quinta General Plan for properties within the Mixed/Regional commercial designation. Given this intensity limitation, the proposed project would not have a significant aesthetic impact in terms of the building intensity standards established by the La Quinta General Plan and zoning regulations.

Cumulative Impacts

This project would represent a further expansion of modern commercial development along the Highway 111 corridor, with a corresponding reduction of sand dune covered open space. The entire highway corridor through La Quinta has been planned for intensive commercial development in the La Quinta General Plan. Provided that this project and future projects are developed in conformance with the City’s goals, policies and standards for preservation of scenic mountain vistas and well designed image corridors, no significant cumulative impacts on the community’s image along the Highway 111 corridor are expected.

MITIGATION MEASURES

The following measure is intended to reduce the significance of the view obstructing impact of building massing that could occur in the northeastern quadrant of the project site.

AES1: Limit building heights in the northeastern quadrant of the project site, i.e., the northern half of Planning Area 2, to one story or 25 feet. Spacing between buildings shall be a minimum of 150 feet. Alternatively, future site development applications in that area may submit a line-of-sight or equivalent visual impact analysis that proves that the placement, height and massing of proposed buildings does not result in a significant obstruction of views of the Santa Rosa Mountains.

AES2: Final plans for landscape improvements along the Highway 111 and Adams Street frontages shall incorporate a screen wall design that avoids a monotonous visual effect, through a meandering alignment, use of offsets, periodic variations in materials, texture, or colors or other measures which achieve the desired effect.

UNAVOIDABLE SIGNIFICANT IMPACTS

With proper implementation of the mitigation measure listed above, no unavoidable significant aesthetic impacts are expected to occur as a result of this project.
5.12 CULTURAL RESOURCES

INTRODUCTION

Recent archaeological investigations of the proposed project site were based on the initial Phase I survey results prepared by the Archaeological Research Unit at the University of California, Riverside, for the previously proposed La Quinta Canyon Center project (Everson 1992). The currently proposed project area involves a portion of the property surveyed by Everson. Phase II testing of sites located within the redefined project area was based on supplemental data provided by CRM Tech (Love 1996) and EIP Associates (McKenna 1997), and the Phase II archaeological investigations were completed by CRM Tech between December, 1996, and January, 1997 (Love 1997). Phase II investigations addressed seven recorded resources located within the project area. The Phase II technical report prepared by CRM Tech is included as Appendix I of this document.

ENVIRONMENTAL SETTING

The project area is located within mesquite dunes associated with the northern shoreline of ancient Lake Cahuilla, a freshwater lake. Lake Cahuilla once covered much of the Salton Basin, a desert basin landform bordering the northern extent of the Colorado Desert, and is the forerunner of the present-day Salton Sea (Norris and Webb 1990:255). The areas associated with Lake Cahuilla are underlain by the Palm Springs Formation, a soft, non-marine formation known to contain petrified wood and sandstone concretions. Sediments within Lake Cahuilla form a nearly horizontal cover over the buried bedrock. This cover is generally a few meters thick but can be found to exceed 900 meters in some areas.

Lake Cahuilla was filled numerous times as tributaries of the Colorado River changed their courses. Between fillings, evaporation quickly reduced the lake level, often leaving a crust on the central part of the basin floor. Geological data suggest Lake Cahuilla was last filled between A.D. 900 and 1400, possibly to its highest shoreline. Elevations within the Centre at La Quinta study area average approximately 60 feet above sea level, or approximately 18 to 20 feet above the high water line for Lake Cahuilla.

Sand dunes surrounding Lake Cahuilla are associated with the extensive sand dunes characteristic of the Colorado Desert. Geologists have attributed the dunes to accumulations of sand being blown ashore from the beaches of Lake Cahuilla, sand transported from the Colorado River areas, and sand trapped by buried faults. The movement of sands throughout the Colorado Desert has rendered this area the largest tract of desert dunes in North America (Norris and Webb 1990:268).
The Centre at La Quinta project area is associated with the Sonoran Life Zone (Munz 1974). The Sonoran Life Zone supports a desert vegetation which is characterized by the presence of creosote bush mesquite, and desert sage scrub. Temperatures vary considerably, depending on the time of year, and the area is generally arid. Significant water run-off generally occurs two or three times every five years, resulting in a clearing of wind blown sands from channels and the cutting of steep banks. These channels provide additional catchments for wind blown sands.

The project area is located within the Coachella Valley, known to be associated with numerous Native American villages and/or settlements (rancherias) of the Desert Cahuilla (Kroeber 1925 and 1976; Strong 1929, and Bean 1978). The Desert Cahuilla are one of three distinct Cahuilla populations that are specifically associated with the Coachella Valley.

The Cahuilla had a relatively complex social organization based on lineages or clans. Individual clans occupied village sites and exploited individualized territories. Interactions with other clans provided exchange in the forms of trade, marriage alliances, and social/ceremonial contact.

Population estimates for the prehistoric Cahuilla range from 3600 to 10,000 individuals. These individuals maintained extensive networks for trade including contacts along the Colorado River and the Pacific Coast. Trails, small camp sites, and other limited use areas have been recorded throughout the Valley and attest to the wide-spread use of the Valley by prehistoric man. Additional evidence of long-term occupation has been identified along the various shorelines of prehistoric Lake Cahuilla. Trade routes (e.g., the Cocomaricopa Trail) and encampments in areas providing fresh water have been identified throughout the Valley and some are known to have been used in historic times by various explorers and settlers of the 1700s and 1800s. With the shifting of sand dunes in the Colorado Desert, archaeological resources associated with the Desert Cahuilla may be found on the desert surface or buried at various depths throughout the area.

Non-Native American settlement of the La Quinta area began after 1900. Early homesteads were filed with the U.S. General Land Office (Love et al. 1992:13). Township 5 South, Range 7 East, Section 29 (which includes the current project area) was granted to the Southern Pacific Railroad in 1905. Between 1905 and approximately 1950, Section 29, which contains the project site, was left undisturbed while surrounding areas were impacted. The La Quinta Hotel, for example, was constructed in 1926 as a resort location and in the 1930s numerous “weekend homes” appear in the La Quinta area, emphasizing the use of the area for recreational purposes (City of La Quinta 1996:31). The 1920s are also associated with the abandonment of the prehistoric/historic Cocomaricopa Trail alignment after the County of Riverside constructed the alignment now known as State Route 111.
The 1950s were associated with unprecedented growth in the Coachella Valley. This growth is credited to the completion of the Coachella Canal (ca. 1948-49) which provided a stable fresh water source for irrigation and agriculture. Such improvements are first noted in the project area in 1952, when assessor records note the initiation of agricultural improvements. Over one half of the project area was covered by date and citrus orchards by 1955-59. A residential site is present within the eastern portion of the property. Maintenance of the orchards ceased in the late 1970s and the residential site was demolished prior to 1987. Over the last ten years, the majority of the property has been reclaimed by the desert sand dunes.

Previous research for this project area identified a minimum of seven cultural resources within the specific project boundaries and a significant number of resources on surrounding properties. Everson surveyed the property in 1992 and recorded prehistoric remains, historic remains, and areas exhibiting a combination of prehistoric and historic elements.

Recent investigations by CRM Tech (Love 1997) addressed the seven known resources within the project area. Each was recorded by Everson in 1992 (Table 35).

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Citation</th>
<th>Description</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-RIV-4745</td>
<td>Everson 1992</td>
<td>Sparse Shell and Lithic Scatter</td>
<td>Tested</td>
</tr>
<tr>
<td>CA-RIV-4748H</td>
<td>Everson 1992</td>
<td>Water Valve Towers, Fence, and Piping</td>
<td>Historic/Modern</td>
</tr>
<tr>
<td>CA-RIV-4749H</td>
<td>Everson 1992</td>
<td>Historic Residential Complex</td>
<td>Historic/Modern</td>
</tr>
<tr>
<td>CA-RIV-4750/H</td>
<td>Everson 1992</td>
<td>Historic Refuse Scatter with Small Shard Scatter</td>
<td>Tested</td>
</tr>
<tr>
<td>CA-RIV-4752</td>
<td>Everson 1992</td>
<td>Prehistoric Shell and Lithic Scatter</td>
<td>Tested</td>
</tr>
<tr>
<td>CA-RIV-4755H</td>
<td>Everson 1992</td>
<td>Dirt Road</td>
<td>Historic/Modern</td>
</tr>
<tr>
<td>CA-RIV-4756H</td>
<td>Everson 1992</td>
<td>Concrete Valve Tower, Fence, and Piping</td>
<td>Historic/Modern</td>
</tr>
</tbody>
</table>

Research completed by CRM Tech resulted in a redefining of historic resources that were previously categorized by Everson (1992). All resources identified by Everson as historic were redefined as modern resources. Each of these resources was found to post-date 1952. These sites included CA-RIV-4748H, CA-RIV-4749H, CA-RIV-4755H, and CA-RIV-4756H. No further studies were completed with respect to these sites and all four were declared insignificant cultural resources.
The remaining three sites were subjected to additional surface recordation and subsurface excavations. CRM Tech excavated ten controlled archaeological units within CA-RIV-4752; two units within CA-RIV-4745; and an additional unit within CA-RIV-4750/H.

CRM Tech determined that prehistoric remains recovered from CA-RIV-4752 represented shallow and sparse deposits associated with the first ten centimeters of sandy soil. The average depth of the excavation units was 32 cm below surface. CRM Tech noted that these deposits appeared highly disturbed with little or no site integrity (1997:23).

Testing at CA-RIV-4745 resulted in similar findings. The ten CRM Tech excavation units were taken to 30 cm below surface and cultural materials were recovered from the first ten centimeters only. This site was also highly disturbed and found to lack cultural integrity.

Testing at CA-RIV-4750/H resulted in the recovery of 73 individual items (26 from Unit 1 and 47 from Unit 2). All of these items were catalogued and determined to be of modern origin (1950s and 1960s). No evidence of prehistoric remains was found. CRM Tech determined that this site was not historic and did not include prehistoric remains.

Based on the results of testing completed by CRM Tech, all resources identified within the current project area were determined to be insignificant. None of the sites yielded evidence of significant remains and none exhibited stratigraphic integrity. However, CRM Tech emphasized that the area of La Quinta is still sensitive for prehistoric cultural remains because such remains are often found in deeply buried contexts, as evidenced during the archaeological excavations of sites located just west of Adams Street.

IMPACT ANALYSIS

Impact Significance Criteria

The approach to the current research was all designed to address the potential significance of each site or concentration of sites in accordance with criteria presented in the California Public Resources Code (PRC §5202.1(j) and Appendix K of the California Environmental Quality Act (CEQA). CEQA specifies that a significant resource is "...a resource listed in, or determined to be eligible for listing in, the California Register of Historic Resources" (PRC §21084.1). Criteria for eligibility to the California Register of Historic Places follow the basic criteria for listing presented in federal Code of Federal Regulations 36 CRF 60.4, as follows:
The quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structure, and objects that possess integrity of locations, design, setting, materials, workmanship, feeling, and association, and:

(a) That are associated with events that have made a significant contribution to the broad patterns of our history; or

(b) That are associated with the lives of persons significant in our past; or

(c) That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

(d) That have yielded, or may be likely to yield, information important in prehistory or history.

Appendix K of CEQA presents additional criteria for archaeological resources evaluated for determination as "important archaeological resources." These criteria include:

(a) Is associated with an event or person of:
 1. Recognized significance in California or American history, or
 2. Recognized scientific importance in prehistory;

(b) Can provide information which is both of demonstrable public interest and useful in addressing scientifically consequential and reasonable or archaeological research questions;

(c) Has a special or particular quality such as oldest, best example, largest, or last surviving example of its kind;

(d) Is at least 100 years old and possesses substantial stratigraphic integrity; or

(e) Involves important research questions that historical research has shown can be answered only with archaeological methods.

Project Impacts
Development of the proposed project is planned to be completed in three major phases. Grading and site preparation would occur in two phases. The first one involves complete alteration of the western half of the site, including site clearance, installation of utilities, and preparation of roads and building pads. The second grading and site preparation phase will include the eastern half of the property.

To date, no archaeological resources meeting any of the aforementioned criteria for significance have been identified within the project area. Therefore, the proposed improvements will have not have any foreseeable significant impact on important archaeological resources.

Despite negative archaeological findings, the western half of the project site has been identified as a sensitive area for buried cultural remains. Therefore, the proposed grading, trenching, compaction, etc., may still result in an adverse impacts to cultural remains.

CUMULATIVE IMPACTS

The proposed development of The Centre at La Quinta project area may impact as yet unidentified important prehistoric cultural remains, as surrounding developments have impacted such resources. The loss of archaeological resources throughout the La Quinta area has resulted in a compounded loss of scientific data needed to understand the prehistory of this area. However, scientific data compiled as a result of this project and other projects in the general vicinity have the potential to yield information important to our understanding of the area's prehistory, as required by CEQA for a determination of significance. Each project yielding scientific data from archaeological projects will add to the growing data base for understanding the prehistoric occupation of the La Quinta area. No significant impacts to cultural resources are anticipated, as long as surveys are conducted by qualified archaeologists in conjunction with future development and public works projects to occur within archaeologically sensitive areas.

MITIGATION MEASURES

The archaeological sensitivity for the project area resulted in a CRM Tech recommendation for archaeological monitoring during grading and any other earth moving activities within the project area. The extent of monitoring would be determined by the overall development plan for the property. At this time, two major grading/site preparation phases are planned, consisting of work on the western half of the site in the first phase, and grading of the eastern half in a later second phase, as described earlier. All identified prehistoric remains were located in the western portion of the property and within the first
grading phase. Therefore, sensitivity is greater in this area and intensive archaeological monitoring is recommended throughout the first grading phase.

CR1: A qualified, professional archaeologist will conduct intensive archaeological monitoring of the entire first grading phase. Based on the results of this monitoring program, recommendations for the extent of subsequent grading/site preparation phases can be reassessed. It is recommended that some level of monitoring be conducted throughout the project area, as cultural resources in this area of the desert often include delicate and relatively small finds (e.g., small campsites, cremations, or other ceremonial sites). It is recommended that the archaeological monitor have the authority to halt any activities causing adverse impacts to potentially significant buried resources. Once identified, the archaeological consultant will evaluate the find(s) in accordance with criteria presented in Appendix K of CEQA. It is also recommended that the archaeological monitoring program involve Native American input, either as observers or consultants. The presence of a Native American monitor would be at the discretion of the local Native American representative(s) and coordinated with the monitoring schedule.

LEVEL OF SIGNIFICANCE AFTER MITIGATION

No important cultural resources have been identified within the proposed project area. However, the sensitivity for buried important resources has resulted in a recommendation for mitigation of potential impacts through archaeological monitoring. Completion of the recommended archaeological monitoring program will lessen any potentially significant impacts to a level of insignificance and no otherwise unavoidable significant impacts are expected.
6.0 IMPACTS FOUND TO BE NOT SIGNIFICANT

INTRODUCTION

Section 15128 of the CEQA Guidelines requires that EIRs contain a brief statement of the reasons that various possible significant effects of a project have been determined not to be significant and are not addressed in the EIR. This section provides that statement for this project.

PRELIMINARY ENVIRONMENTAL ASSESSMENT

A preliminary evaluation of the project’s environmental effects was prepared at the beginning of the environmental review process, in an effort to determine whether an EIR should be prepared and if so, what topics the EIR should focus on. This evaluation was based on the description of the proposed project as presented in an early draft of the proposed Specific Plan, a review of previous environmental studies that contained information of direct relevance to this project’s environmental effects, and responses to the Notice of Preparation of an EIR that were distributed to various state, county and local agencies (see Appendix C). The results of this preliminary assessment are presented in an Initial Study, which is contained in Appendix B of this EIR. This document presents the initial findings concerning the project’s environmental effects with respect to a wide variety of issues. Such findings included a number of issues for which it was determined that the project could have a significant environmental impact; those topics are examined in sections 5.1 to 5.12 of this EIR. In addition, the Initial Study provides an explanation of why a number of potential effects were determined not to be significant, and, therefore, not evaluated in this EIR. Effects were found not significant on the basis that the project would not result in particular effects, or would result in certain effects, but with minor consequences, or that potentially significant impacts can be readily mitigated through compliance with existing regulations established by federal, state, county agencies or the City of La Quinta. Those impacts found to be not significant are listed below.

IMPACTS FOUND NOT SIGNIFICANT

Land Use and Planning

- Project would not conflict with the La Quinta General Plan or Zoning regulations.
- Project would not have an impact on agricultural resources or operations.
- Project would not disrupt or divide the physical arrangement of an established community.
Population and Housing

- Project would not contribute to an exceedance of an official or local population projection.
- Project would not displace any existing housing, especially affordable housing.

Earth and Geology

- Project would not be affected by seiche, tsunami or volcanic eruption.
- Project would not be affected by and would not contribute to landslides or mudslides.
- Project would not affect unique geologic or physical features.

Water

- Project would not be located in a known flood hazard area.
- Project would not have a significant impact on the amount of surface water in any water body.
- Project would not have a significant impact on currents or the course or direction of water movements.
- Project would not have an impact on the direction or rate of flow of groundwater.
- Project would not have a significant impact on groundwater quality.

Air Quality

- Project would not significantly alter air movement, moisture, or temperature, or cause any change in climate.
- Project would not create any significant odor problems.

Transportation/Circulation

- Project would not create significant safety hazards related to its design features.
- Project would not create inadequate emergency access or inadequate access to nearby uses.
- Project would not have insufficient parking capacity on- or off-site.
- Project would not create significant hazards or barriers for pedestrians or bicyclists.
- Project would not conflict with adopted policies supporting alternative transportation.
- Project would not affect rail, waterborne, or air traffic.
Biological Resources

- Project would not affect any locally designated species.
- Project would not affect any locally-designated natural communities.
- Project would not affect any wetland habitat.
- Project would not affect wildlife dispersal or migration corridors.

Energy and Mineral Resources

- Project would not conflict with adopted energy conservation plans.
- Project would not have a significant impact on non-renewable resources.

Risk of Upset/Human Health

- Project would not have a significant risk of accidental explosion or release of hazardous substances.
- Project would not result in a significant impact on an emergency response plan or an emergency evacuation plan.
- Project would not create any significant health hazard or potential health hazard.
- Project would not expose people to existing sources of potential health hazards.
- Project would not increase the level of fire hazard in an area with flammable brush, grass, or trees.

Public Services

- Project would not have a significant impact on public schools.
- Project would not have a significant impact related to maintenance of public facilities, including roads.
- Project would not have a significant impact on other governmental services.

Utilities and Service Systems

- Project would not have a significant impact on power or natural gas systems.
- Project would not have a significant impact on communications systems.
- Project would not have a significant impact on sewers or septic tanks.

Aesthetics
• Project would not result in significant light or glare impacts.
6.0 Impacts Found to be Not Significant

Cultural Resources

- Project would not disturb paleontological resources.
- Project would not cause a physical change which would affect unique ethnic cultural values.
- Project would not restrict existing religious or sacred uses.

Recreation

- Project would not significantly increase the demand for neighborhood or regional parks or other facilities.
- Project would not have an adverse impact on existing recreational opportunities.
7.0 ALTERNATIVES

PURPOSE

To promote an understanding of ways to avoid or lessen the significant impacts of a project, the CEQA Guidelines require a discussion of alternatives to a project as proposed. A range of reasonable alternatives to a project, or the location of a project, which could feasibly attain most of the basic project objectives, need to be considered. The discussion should focus on those alternatives which would avoid or substantially lessen significant impacts of the project and provide a comparison of the merits of each alternative.

The comparison of alternatives needs to provide sufficient information about each alternative to allow for meaningful evaluation, analysis, and comparison with the proposed project.

ALTERNATIVES CONSIDERED

Because a primary purpose of an EIR is to identify ways to mitigate or avoid a project’s significant impacts on the environment, the discussion of alternatives needs to focus on alternate types of projects or alternate locations, which are capable of avoiding or substantially lessening one or more significant effects of the project. Such alternatives are appropriate for discussion even if they would impede to some degree the attainment of the project objectives, or would be more costly. Additionally, any alternatives that were previously considered, but dropped from further consideration, are to be identified in this discussion.

The CEQA Guidelines state that an EIR should briefly describe the rationale for selecting the alternatives discussed. With regard to the feasibility of alternatives and alternative sites, the CEQA Guidelines allow consideration of a wide variety of factors including economic viability, site suitability, availability of infrastructure, general plan consistency, other plans or regulatory limitations, jurisdictional boundaries, and whether an applicant can reasonably acquire or have access to an alternative site. Section 15126(d)(5)(C) also states that an EIR does not need to consider an alternative whose effect cannot be reasonably ascertained and whose implementation is remote and speculative.

A specific requirement of the CEQA Guidelines that is included in this section is an analysis of the “No Project” alternative. This discussion is intended to describe the existing environmental conditions and also what could occur in the future, given existing land use regulations and the capacities of existing infrastructure and service systems.

In addition to the “No Project” alternative, three other alternatives were selected for analysis in this DEIR: (1) a reduced density alternative; (2) an alternative mix of land uses; and (3) an alternative location.
A reduced density alternative was selected to determine the potential for a reduction in the level of impacts associated with the level of development proposed for the site. Primarily, this alternative has been included to study the effects of reduced development on traffic, air quality, noise, water supplies, public services and solid waste disposal, which are potentially significant impacts of the proposed project and are directly related to project density. Impacts associated with alteration and removal of on-site environmental features would be virtually the same for any development scenario that would entail grading of the entire site and construction of buildings and parking areas throughout the site. The reduced density alternative includes approximately three-quarters of the amount of development included in the proposed project.

An alternative mix of uses for the property was also selected for analysis. This alternative consists of a mixed use project consisting of hotel and conference facilities oriented around a private, 9-hole golf course, along with professional offices along Highway 111. Professional offices, overnight commercial lodging uses and related businesses serving a regional area are among the uses allowed in the Mixed/Regional Commercial areas, as defined in the La Quinta General Plan Land Use Element. Given the site location along Highway 111, a regional transportation corridor, a growing permanent and seasonal population and the general recognition of La Quinta and nearby desert communities as recreation/resort centers, development of a mixed use hotel/conference center and professional offices project is considered a logical alternative use for this property. This alternative was selected for analysis in order to study whether the change in uses would reduce the type and level of impacts associated with the project as proposed.

An alternate location was also selected for evaluation, as another potential method of reducing or eliminating one or more of the significant impacts associated with the proposed project at the subject site.

No residential alternatives have been considered, because the La Quinta General Plan prohibits development of residential uses along the Highway 111 frontage, due to excessive traffic, noise and other unsuitable environmental conditions along that heavily traveled roadway. Furthermore, the General Plan land uses policies for the Mixed/Regional Commercial designation that applies to this site are primarily intended to facilitate development of major businesses that have a regional orientation.

Previously Considered Alternative

In 1992, a different developer submitted an application to the City of La Quinta for approval of a much larger project that encompassed 160 acres of land, including the proposed project site. That proposal was for a 1.9 million square foot retail and office project, to be constructed in three phases. An enclosed
regional mall and five outparcel buildings, totaling 1.1 million square feet of floor area was proposed to cover the majority of the subject project site. Before the City acted to approve or disapprove the project, the developer withdrew his application. Based solely on the much higher development intensity of that previous proposal, the proposed project's impacts on traffic, air quality, water supplies and solid waste disposal would be significantly lower than that prior project. Impacts related to site specific conditions such as geological constraints, biological resources, surface hydrology, aesthetics and cultural resources would be very similar.

A description of each alternative evaluated in this section follows, along with a comparative analysis of environmental effects and a discussion of the ability of each alternative to meet the project objectives.

Reduced Density Alternative

Description

This alternative consists of the same mix of auto sales/services and retail/mixed commercial activities included in the proposed project, in the same basic site plan configuration, but with a reduction in development intensity of 25 percent. The amount of development considered in this alternative is approximately 506,300 square feet, compared to approximately 675,000 square feet in the proposed project. This level of development amounts to an F.A.R. of 0.13, below the project F.A.R. of 0.18 and well below the maximum F.A.R. allowed by the General Plan of 0.35 or 1.37 million square feet. This alternative plan includes 206,300 square feet of auto sales/services facilities in seven auto dealerships on the western half of the site, and a 300,000 square foot mixed retail/commercial center on the eastern half of the site. The balance of the site would be devoted to internal streets and a 150' x 150' area reserved for a future CVWD well site.

Buildings, storage areas and vehicle display areas within the auto sales center would be of similar scale as those included in the proposed project. Fewer buildings or possibly the same number, but smaller buildings would occur in the retail/commercial center part of the site. Because customer parking requirements would be substantially lower in this alternative, a greater amount of site coverage would be devoted to landscaped areas, along the site frontages and in the site interior.

Comparison of Environmental Impacts

Transportation and Circulation

The proposed project would generate approximately 22,500 additional daily vehicle trips 675 AM peak hour trips and 1,730 PM peak hour trips. This alternative would generate approximately 16,934 additional
daily trips, with 519 trips occurring in the AM peak hour and 1,286 PM peak hour trips. Trip generation would be reduced by approximately 23 percent in the AM and 26 percent in the PM peak periods under this alternative compared to the proposed project. The traffic impacts of this alternative are expected to be reduced by a similar magnitude at study area intersections and roadway segments. While this reduction in the number of vehicle trips is substantial, the traffic generated by this proposed alternative would still result in significant impacts at all of the outlying intersections significantly impacted by the proposed project, because intersection conditions for future years are projected to be at deficient levels of service before the addition of traffic from this site. Outbound trips from the project site to Highway 111 and Adams Street would be high enough under this alternative or the proposed project to warrant the installation of traffic signals at both locations. The mitigation program required would be similar to that of the proposed project. After mitigation, neither the proposed project nor this alternative would have any significant unmitigated traffic and circulation impacts.

Air Quality

This reduced density development alternative would generate approximately 25 percent less traffic volumes, and as a result, lower air emissions. Even though this alternative would generate fewer vehicle trips, the emissions generated would exceed SCAQMD recommended thresholds of significance. Emissions during site grading would be approximately the same for this alternative and the proposed project, since each alternative involves the same site plan concepts. As with the proposed project, this alternative would be required to implement project specific mitigation measures for air quality impacts outlined in this Draft EIR for the proposed project. Even after implementing all feasible mitigation, this alternative, like the proposed project, would continue to generate a level of emissions greater than the SCAQMD significance thresholds, albeit at lower levels than with the proposed project.

Noise

Since this alternative would generate less vehicular trips than the proposed project, it is anticipated that the increase in roadway noise from project traffic would be less. Increases in roadway noise levels were not found to be a significant impact of the proposed project. The land use plan for this alternative places buildings and parking structures in the same locations as the proposed project. Neither this alternative nor the proposed project would result in any significant adverse noise impacts.

Water Distribution and Storage

A reduction in total square footage by approximately 25 percent would be expected to reduce water demand associated with interior plumbing fixtures by a similar amount. This reduction could, however, be offset by higher irrigation demand due to greater site landscape coverage than in the proposed project. Actual irrigation demand would depend upon the type of plant materials selected and their water demand characteristics, as well as the efficiency of the irrigation system. If all landscape areas in this
alternative were to be devoted to extremely low water demand materials, including a high percentage of stones, boulders, wood chips and other decorative materials that do not require irrigation, this alternative could reduce the total water demand, compared to the proposed project.

This alternative, like the proposed project, would include a 150' X 150' area to be reserved for a future CVWD well site.

Solid Waste Disposal

This alternative would generate roughly 1,800 tons per year of solid waste materials, compared to roughly 2,400 tons per year with the proposed project. Waste materials would be of the same composition for both scenarios, given the same type of land uses. Considering the current and future shortage of available landfill space in the Coachella Valley area, a reduced density alternative would be subject to the same type of solid waste reduction and recycling measures identified for the proposed project, in Section 5.9 of this EIR. Project-level impacts for either scenario would be less than significant, with mitigation measures. Cumulative impacts would be significant for this alternative, for the proposed project and for any development scenario that would generate recurring volumes of solid waste that would require off-site disposal.

Public Services

Demand for sheriff, fire protection and emergency medical services would be approximately the same for this alternative as for the proposed project. Although the total amount of site development would be approximately one-fourth less, involvement by sheriff and fire officials in final plan checking would be roughly equivalent, and the frequency of responses to calls for assistance by sheriff, fire and ambulance services would also be roughly equivalent to the level of response required for the proposed project. This is because the demand for such services is not directly related to the total square footage, but to the overall site area, type of uses and general site plan layout. Site access and interior circulation would be the same for this alternative and would not represent any better or worse circumstance for sheriff, fire department or ambulance responses. Neither this alternative nor the proposed project would have any significant unmitigated impacts associated with public services.

Aesthetics

This alternative would involve placement of buildings and parking areas in approximately the same locations as the proposed project. With less total building area, the overall mass of buildings under this alternative would be less than the amount proposed under the proposed project. Both this alternative and the proposed project would provide landscaped streetscapes in accordance with the City's Circulation Element policies for Highway 111 and Adams Street. It is assumed that the same landscape theme would occur for this alternative or the proposed project, although the landscape setbacks along the two frontages
could be larger, due to reduced site coverage by buildings and parking lots. Perimeter walls and signage would be similar, for either scenario.

Given the similarity in design concepts for improvements along Highway 111, and similar building heights and locations, this alternative would have approximately the same level of impact on views from Highway 111 as the proposed project, in terms of significantly obstructing long distance views of the Santa Rosa Mountains. If building heights in this alternative are lower in the northeastern quadrant of the project site, then this alternative would have a reduced level of impact on views of the mountains compared to the proposed project. Foreground and middle-ground views of the project site would likely contain more landscape elements.

This alternative would require nighttime illumination of sidewalks, interior streets and parking areas, and vehicle display areas within the auto mall, that would also occur under the proposed project. Therefore, light and glare effects under this alternative would be similar to the proposed project. In either case, proper lighting design would mitigate potential impacts to below a level of significant.

Relation to the Project Objectives

This alternative would satisfy the City’s objectives for the project, in that the proposed mixture of uses are consistent with the land use policies for this area as set forth in the La Quinta General Plan. Further, the mix of auto dealerships and retail commercial uses would generate a substantial amount of sales tax revenue that would accrue to the City’s General Fund, thus improving the City’s economic base and ability to provide services and maintain community facilities. Because the size of the project would be reduced by 25 percent, the amount of sales tax revenue would be less than the amount that would be generated by the proposed project.

A reduced density alternative, as described above, would also be consistent with part of the applicant’s basic objective in that such an alternative would improve the value of this property through development of an auto mall and gaining City approvals for future retail/commercial development. However, the property value would not be enhanced to the same extent as the proposed project, due to the reduced square footage of leasable or salable commercial improvements. The applicant also seeks a reasonable return on its investment as a basic objective and the reduced density alternative would yield a smaller return than the proposed project. The applicant has indicated that this alternative would not satisfy its objective for return on investment (see Appendix L).

Conclusion
The reduced density alternative would reduce the level of several impacts which can be mitigated to a level of less than significant, for the proposed project or this alternative. These areas include traffic, noise, and public services. Topics for which there would be an unavoidable, significant impact for this alternative or the proposed project include air quality (project-level) and solid waste disposal (cumulative). No mitigation measures are available which could reduce these impacts to below significant, for either alternative. This alternative would result in lower long-term air pollutant emissions than the project, but will not reduce impacts to a level of insignificance. It would also reduce the total amount of solid waste generated at the site, but would not reduce cumulative impacts to below a level of significant.

This alternative would satisfy the City’s land use and economic base objectives, and would achieve the applicant’s objective to enhance the value of their property, but would not satisfy the applicant’s objective concerning return on investment.

Hotel/Golf/Office Alternative

Description

Many configurations of a mixed-use hotel and conference facility/golf course/professional office plan could be developed on this 87 acre, fairly level, and roughly rectangular-shaped site. For the purpose of this EIR discussion, this alternative is defined as including 220,000 square feet of general office space on the northern quarter of the site along Highway 111; a hotel/conference facility with 400 guest rooms and 80,000 square feet of conference space; and a 9-hole golf course covering approximately half of the site area, meandering through the hotel/conference facilities. The balance of the site would be devoted to internal streets and a 150’ x 150’ area reserved for a future CVWD well site. Site access would also be from a main entrance on Highway 111 and from a secondary entrance on Adams Street. Offices are sited along Highway 111 to take advantage of the high visibility and easy access to this regional transportation corridor. Hotel and conference facilities are located in the site interior to achieve a quiet atmosphere, away from the highway, and also to relate more directly to the interior golf course. Figure 29 illustrates the land use concepts for this alternative.

Comparison of Environmental Impacts

Land Use

As discussed in Section 5.1 of this EIR, the proposed project involves the relocation of four existing auto dealers currently operating on land within the City of Indio. That section evaluated the potential for such relocations to result in physical blight of the affected sites in Indio, and found that it would not be
indefinite. Each site has some positive locational attributes to support reuse or redevelopment with other retail businesses that could capture some of the unmet demand that has been identified in the Indio market area. Section 5.1 of this EIR concludes that this project would not have a significant adverse impact on land uses in the affected part of Indio. This alternative would not include any auto dealerships and would not, therefore, have any land use impact on the sites of existing or proposed dealerships in Indio or elsewhere.

Both the proposed project and this alternative are consistent with the La Quinta General Plan Land Use Element policies for this site.

Transportation and Circulation
Total new average daily trips for this alternative would be approximately 7,330, versus approximately 22,500 for the proposed project, a reduction of 67 percent. Total AM peak period trips would be approximately 695 for this alternative, compared to approximately 675 for the proposed project. Total PM peak hour trips for this alternative would be approximately 745, compared to 1,730 with the proposed project. This alternative would, therefore, substantially reduce average daily trips and PM peak period trips with roughly the same volume of AM peak period trips. Since deficient levels of service are forecast for year 2000 and year 2005 traffic conditions at outlying intersections, without any traffic from this site, additional traffic from the proposed project or this alternative would worsen congestion and be considered significant. Despite much lower total traffic volumes and much lower peak period traffic, this alternative would also generate more than enough outbound trips to warrant the installation of traffic signals at the Highway 111/main project entrance and at an Adams Street entrance. The same kind of traffic mitigation program identified in Section 5.5 for the proposed project would also apply to this project, however, this alternative's proportional share of the need for intersection improvements would be lower than the proposed project's share. With the
7.0 Alternatives

INSERT FIGURE 29
ALTERNATIVE LAND USE PLAN
mitigation measures identified in Section 5.5, neither this alternative nor the proposed project would result in any unavoidable, significant traffic impacts.

Air Quality
This alternative land use plan would generate approximately 67 percent less traffic volumes, and as a result, lower air emissions. Even though this alternative would generate fewer vehicle trips, the emissions generated would exceed SCAQMD recommended thresholds of significance. Emissions during site grading would be approximately the same for this alternative and the proposed project, since each alternative involves grading of the entire site, although the phasing would likely occur in a different manner. As with the proposed project, this alternative would be required to implement specific mitigation measures for air quality impacts outlined in this Draft EIR for the proposed project. Even after implementing all feasible mitigation, this alternative, like the proposed project, would continue to generate a level of emissions greater than the SCAQMD significance thresholds, albeit at lower levels than with the proposed project.

Noise
With a 67 percent reduction in daily traffic along area roadways, traffic noise associated with this alternative would be substantially reduced, compared to the proposed project. Replacement of the auto dealers and their service bays with offices, hotel rooms and golf course elements would also result in a reduction in on-site noise near the Lake La Quinta residential community, compared to the proposed project. Potentially significant noise impacts associated with the proposed project can be mitigated to less than significant with the measures identified in Section 5.7 of this EIR. Therefore, no unavoidable significant noise impacts would occur with this alternative land use plan or the proposed project.

Water Distribution and Storage
This alternative, like the proposed project, would include a 150’ X 150’ area to be reserved for a future CVWD well site.

The golf course element in the alternative land use plan represents a major water user component that is not present in the proposed project. In accordance with current CVWD policy, irrigation water would only be supplied from their imported supplies, via the Coachella Canal, not from the their groundwater supplies used for domestic service. The developer would be responsible for installing necessary distribution lines to bring the canal water to the golf course. The closest existing use of canal water is at the Rancho La Quinta project, however, it is not known whether it would be feasible to simply extend a pipeline from there to the project site or whether a new distribution system would be needed.\(^1\) A 400-room hotel would also normally consume higher volumes of water than a comparable amount of auto

\(^1\) Mr. Jim Zimmerman, Coachella Valley Water District. Personal Interview, March 12, 1997.
dealership facilities or retail commercial facilities, due to the heavy consumption in restrooms, laundry rooms and kitchen areas for personal hygiene in guest room bathrooms. The total impact on CVWD water supplies for this alternative may be higher, lower, or about the same as the impact of the proposed project, depending upon the number of interior plumbing fixtures, amount and type of landscaping and irrigation systems, occupancy levels of the hotel and offices, and whether the golf course is completely covered by turf grass or has other landscape elements such as rock formations, native desert vegetation zones, etc.

It is anticipated that CVWD would be able to provide adequate water volumes to meet the demands of this alternative land use plan. CVWD has previously indicated that the proposed project can be served by existing water supply and distribution facilities. Neither this alternative nor the proposed project would have a significant project-level impact on water supplies or storage. If continuing water conservation and water management efforts by the CVWD and local jurisdictions within the CVWD service area are successful, no significant cumulative impacts on water supply or storage would result from this alternative or the proposed project.

Solid Waste Disposal

This alternative would generate approximately 1,400 tons of solid waste annually, compared to 2,400 tons with the proposed project. Waste composition would be different than the proposed project, consisting of more green waste associated with golf course maintenance and more paper and ink wastes associated with office uses. Opportunities to recycle solid wastes produced by this alternative land use plan would likely be reduced compared to the proposed project, since a higher percentage of the proposed project wastes would consist of recyclable cardboard, glass and plastic containers, paper and plastic packaging materials, and aluminum cans. Given the current and future shortage of available landfill space in the Coachella Valley area, this alternative land use plan would be subject to the same type of solid waste reduction and recycling measures identified for the proposed project, in Section 5.9 of this EIR. Project-level impacts for either scenario would be less than significant, with mitigation measures. Cumulative impacts would be significant for this alternative, for the proposed project and for any development scenario that would generate recurring volumes of solid waste that would require off-site disposal.

Public Services

The offices and hotel/conference facilities included in this alternative land use plan would not be expected to have a significant impact on the demand for service by the County Sheriff Department, and would not have a substantially different level of impact than the proposed mix of land uses.² As discussed in Section 5.10 of this EIR, the proposed project is not expected to have a significant impact on sheriff or fire department services. Potential fire hazards may be reduced for this alternative due to

² Lieutenant Denver Pittman, Riverside County Sheriff Department. Personal Interview, March 17, 1997.
elimination of auto repair uses that often contain flammable materials stored and used on a regular basis. This alternative would also have a substantially lower amount of building area which could become enflamed. The amount of people that may need to be evacuated in a fire or other major emergency would likely be reduced for this alternative, due primarily to the large site area devoted to the golf course and the normal absence of office workers after regular workday hours. Site access would be equivalent for either this alternative or the proposed project, so response times by sheriff, fire department or ambulances would be the same.

Aesthetics
Aesthetic effects of this alternative would be different and potentially of greater magnitude than the proposed project. With office uses concentrated along Highway 111, the mass of buildings visible in the foreground view from the highway would likely be greater than with the proposed project. If so, the increased foreground massing would obscure a greater amount of the view of the distant Santa Rosa Mountains, as well as the site interior, compared to the massing associated with the proposed project. Landscape setback requirements along Highway 111 and Adams Street would be the same for this alternative or the proposed project, based on the City's Circulation Element policies and zoning regulations.

Relation to the Project Objectives
This alternative would satisfy the City's objectives for the project, in that the proposed mixture of uses are consistent with the land use policies for this area as set forth in the La Quinta General Plan. Further, the hotel/conference center would generate a substantial amount of transient occupancy tax revenue that would accrue to the City's General Fund, thus improving the City's economic base and ability to provide services and maintain community facilities. Because this alternative would eliminate the auto sales and large-scale retail commercial uses included in the proposed project, and would include a substantial office element that does not generate sales tax revenue, it is estimated that this alternative would generate lower total City tax revenues than the amount that would be generated by the proposed project.

A hotel/golf/offices alternative, as described above, would be consistent with part of the applicant's basic objective of improving the value of this property through development of land uses that would generate a return on investment in this property. However, the applicant also seeks a reasonable return on its investment as a basic objective. The applicant has indicated that this alternative would not satisfy its objective for return on investment (see Appendix L).

Conclusion
The hotel/golf/offices alternative would reduce the level of several impacts which can be mitigated to a level of less than significant, for the proposed project or this alternative. These impacts include traffic, noise, and public services. Impacts on views from Highway 111 would likely be greater with this alternative than with the proposed project, unless mitigated through revised site and building design. Topics for which there would be an unavoidable, significant impact include air quality (project-level) and solid waste disposal (cumulative). This alternative would result in lower long-term air pollutant emissions than the project, but will not reduce impacts to a level of insignificance. It would also reduce the total amount of solid waste generated at the site, but would not reduce cumulative impacts to below a level of significant. No feasible mitigation measures are known that would reduce the air quality or solid waste impacts to below a level of significant, for either alternative.

This alternative would satisfy the City’s land use and economic base objectives, and would satisfy the applicant's objective of substantially improving the value of their property, but it would not satisfy their objective for return on investment.

Alternative Location

This alternative consists of developing the proposed project at an alternative location along the Highway 111 corridor in La Quinta. To satisfy the City of La Quinta’s objectives for this project, it must be located in an area, such as the Highway 111 corridor, that is planned for economically productive development, and that is oriented toward a regional market area. Several vacant sites large enough to support development of the proposed project occur along Highway 111 in La Quinta; however, only one has been formally planned for commercial development so far. Because the City has already approved a large-scale commercial development for this property, pursuant to a comprehensive specific plan, the proposed project could probably be evaluated and approved for development sooner at this alternative site than at one of the other sites that would start the planning process “from scratch.” The alternative site selected for analysis is a vacant, sand dune covered, 65 acre site bordered by Highway 111, Adams Street and Washington Street (see Figure 30). Specific Plan 87-011 was previously approved by the City of La Quinta for development of a 775,000 square feet retail/commercial center on that site. No specific development applications have been submitted for City approval to-date, therefore, it is still possible to consider another development concept, such as the proposed project, for this alternative site.
7.0 Alternatives

Insert Figure 30
Alternative Site Location
Site Suitability

With an extensive frontage along Highway 111, softly rolling surface topography, and direct site access from three roadways, this 65 acre site is considered physically suitable in terms of size, location and topography for development of the proposed project.

Relationship to Project Objectives

Given its proximity to the proposed project site, the alternative site is in the same market area, with respect to the proposed mix of land uses. Given the similarity in existing site conditions, i.e., vacant, rolling sand dunes and adequate local infrastructure, it is presumed that costs of site development would be similar to costs at the proposed project site. Visibility along Highway 111 is excellent and extensive at this site, with approximately the same amount of frontage as at the proposed project site. This alternative site appears to be equally well positioned as the proposed project site to provide economic viability for the proposed development concept, and would be consistent with the City’s objectives for this project. However, since the project applicant does not currently own or have a substantial interest in the alternative site, it is not known whether the applicant could acquire such an interest in a timely or financially feasible manner.

Availability of Infrastructure

All utilities and service systems needed to support the proposed project are currently available in the immediate vicinity of the alternate site.

General Plan Consistency

The La Quinta General Plan designates the alternate site for Mixed/Regional Commercial Uses, which is the same land use designation that applies to the proposed project site. As discussed in Section 4.0 of this EIR, the proposed project is consistent with the land use policies established for this designation. This alternate site is suitable, therefore, from the standpoint of General Plan consistency.

Other Plans or Regulatory Limitations

An amendment to the Washington Square Specific Plan (SP 87-011) would be required to add auto dealerships and related sales and services uses to the list of principally or conditionally permitted uses. No other plans or regulatory limitations apply to this alternate site that would present constraints to development of the proposed project.
7.0 Alternatives

Jurisdictional Boundaries

The alternate site is located entirely within the jurisdictional boundaries of the City of La Quinta, therefore, the City’s objectives for this project could also be met at this site.

Can the Proponent Acquire, Control or Have Access to the Alternative Site (or is Alternative Site Owned By Proponent)

The alternative site is available for sale. However, it is not know if the owner would sell the property to this project applicant or if the applicant would be able to acquire the property on terms satisfactory to the applicant, the owner and the occupants of the proposed auto mall. Further, acquisition and use of the alternative site would not meet the applicant’s objectives of bringing value to the subject property it now owns and obtaining a reasonable return on its investment in that property.

Environmental Impacts

Site-specific impacts involving soils, geological structure, cultural resources, biological resources, surface hydrology and aesthetics that might occur at the proposed project site (absent mitigation), would also occur at the alternative site, which has similar physical characteristics as the proposed project site. Due to the proximity of the two sites, and the identical mix and intensity of land uses, impacts involving traffic, air quality, noise, water supply and storage, solid waste disposal, public services and aesthetics would be of similar magnitude and significance at either the proposed site or this alternative site.

Conclusion

Based on the immediately preceding discussion, the alternative site would appear to be suitable for the proposed project land use concept, in terms of size, location, availability of infrastructure and absence of major regulatory or environmental constraints. It would offer the same economic benefits to the City as the proposed project, with nearly identical environmental impacts. It would not accomplish any of the applicant’s objectives for the proposed project site.

No Project Alternative

The CEQA Guidelines require that a “no project” alternative be evaluated in an EIR. This alternative consists of an “existing conditions” scenario where no changes would occur with respect to the environmental setting on and surrounding the subject site. The Guidelines further state that the “no
project” analysis should discuss what would reasonably be expected to occur in the foreseeable future if the project was not approved, based on current land use regulations and plans.

Environmental Analysis

Existing Conditions Scenario
Under the “no project, existing conditions” alternative, the project proposed by Stamko Development would not be approved by the City of La Quinta. The project site would remain vacant and the on- and off-site impacts associated with the proposed project would not occur.

Mixed/Regional Commercial Scenario
As previously discussed, the project site is designated for “Mixed/Regional Commercial” uses in the La Quinta General Plan Land Use Element. In accordance with the land use policies defined for this designation, a “Mixed/Regional Commercial” scenario, the project site could be developed with a variety of regional commercial, recreational, institutional and residential uses, pursuant to a planning framework and development regulations set forth in a specific plan. A maximum floor area ratio (F.A.R.) of 0.35 is identified as the upper limit of permissible development intensity. A F.A.R. of 0.35 equates to approximately 1.3 million square feet of leasable commercial floor area. This maximum allowable intensity is nearly twice as much as the 675,000 square feet that would be permitted by the proposed project.

On-Site Impacts
Assuming grading and site preparation activities cover the entire project site, on-site impacts associated with a Mixed/Regional Commercial alternative would generally be equivalent to the type and magnitude of impacts that would occur with the proposed project. Impacts on views from Highway 111 would likely be more substantial, due to higher intensity development that would require larger buildings and possibly multi-level parking structures that would obstruct more of the views of the distant Santa Rosa Mountains.

Off-Site Impacts

Traffic and Circulation
A mixed/regional commercial development at the maximum intensity allowed under the La Quinta General Plan would generate a significantly greater volume of peak hour and daily traffic than the proposed project. Accordingly, impacts to the local and regional circulation network would also be significantly greater than the range and level of impact projected for the proposed project.
Air Quality
Assuming grading and site preparation activities cover the entire project site, construction-period air quality impacts would be of similar composition and magnitude as the impacts associated with the proposed project, although variations in the location and timing of grading phases could occur. Long-term impacts, primarily related to traffic exhausts, would be substantially more significant than the level of emissions that would result from the proposed project. In either case, daily thresholds recommended by the South Coast Air Quality Management District would be substantially exceeded.

Noise
Construction-period noise impacts would be approximately of the same type and magnitude for a Mixed/Regional Commercial development or the proposed project, assuming a similar level of grading and complete alteration of the site’s surface topography. Over the long-term, traffic-related noise levels would be higher for this alternative, due to the much higher traffic volumes that would be generated. Noise from on-site activities could be more extensive, due to more intensive development that may include parking structures, late evening activities, etc.

Water Distribution and Storage
With nearly twice the amount of building area as the proposed project, a full intensity Mixed/Regional Commercial scenario would consume substantially larger volumes of water for domestic purposes, and possibly the same or less volume for irrigation purposes, depending on the amount of site coverage with impervious surfaces. This alternative would thus have a more significant impact on local and regional water supplies than the proposed project. Also, a more intensive scale of development may require substantial upgrades of the off-site water distribution system to satisfy requirements for fire flow and water demand.

Solid Waste Disposal
With nearly twice the amount of building area as the proposed project, a full intensity Mixed/Regional Commercial scenario would generate substantially larger volumes of solid waste that would require off-site disposal, compared to the proposed project. This alternative would have a greater level of impact on landfills which receive solid wastes from La Quinta. Such higher volumes of solid waste requiring off-site disposal would also have a more substantial effect on the potentially significant cumulative impacts projected for the Coachella Valley’s solid waste disposal needs.

Public Services
A maximum intensity Mixed/Regional Commercial development, would be expected to generate a higher number of calls for response from the sheriff department. With more buildings of larger scale, the risk of fire hazard and the potential magnitude of fires that could occur would likely be increased under this
higher intensity scenario, compared to the proposed project. Special fire-fighting equipment may be required, depending upon the height of buildings, internal circulation constraints, specific fire flow requirements, etc. With higher development intensity, this alternative would also likely have a much higher daily on-site population than the proposed project. This could present greater challenges for an emergency evacuation or possibly increase the number of persons affected by a fire or other major hazard that could occur at the site. This could place greater burdens on the level of response required from fire and ambulance crews.

Relation to Project Objectives

The “no-project, existing conditions” alternative would not satisfy either the applicant’s or City’s project objectives.

Any form of development which conforms to the land use policies established by the La Quinta General Plan for the Mixed/Regional Commercial designation, and which is subject to a comprehensive planning and environmental mitigation program would be consistent with the City’s land use objectives for this site. If a significant component of such a scenario is not devoted to sales tax generating activities or to other activities which generate revenues to the City’s General Fund, this alternative would not satisfy the City’s fiscal objectives for this project. Furthermore, any scenario which does not include a mix of uses which are currently in demand in the La Quinta market area would not satisfy the applicant’s objective of realizing a near-term profit on its investment in the subject property. Without tenants who are committed to occupying sites in the first phase of this project, it would be more difficult for the applicant to achieve this objective. At this time, it appears that auto dealerships are among those types of uses that are currently in demand in this area, as evidenced by the agreements with four Indio dealerships to relocate to the proposed project site.

Conclusions

A “No-Project, Existing Conditions” alternative would be environmentally superior to the proposed project and any other development alternative that may be proposed at this time. This scenario would not, however, satisfy project objectives established by the City or the applicant, and would require purchase of the subject site by an entity that would preserve the land in an undeveloped condition. A “No-Project, Mixed/Regional Commercial” alternative, at the maximum development intensity permitted by the La Quinta General Plan, would have substantially greater adverse off-site environmental impacts than the proposed project and, depending upon the specific mix of uses, may not satisfy all project objectives.
SUMMARY

As discussed in the introduction to this section, the CEQA Guidelines require that the discussion of alternatives to a project, or the location of a project, focus on those alternatives which can feasibly attain the basic objectives of the project while avoiding or reducing the significant impacts of the project as proposed. Table 36, below, provides a summary of the alternatives discussed in this section in relation to potentially significant environmental impacts of the proposed project, and the ability to meet the project objectives.

<table>
<thead>
<tr>
<th>Alternatives Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Density</td>
</tr>
<tr>
<td>Reduced Impacts</td>
</tr>
<tr>
<td>Significant Impacts</td>
</tr>
<tr>
<td>Avoided or Substantially Reduced</td>
</tr>
<tr>
<td>Additional Impacts</td>
</tr>
<tr>
<td>Environmentally Superior</td>
</tr>
<tr>
<td>Meets Project Objectives</td>
</tr>
<tr>
<td>City: Yes</td>
</tr>
<tr>
<td>Applicant: Partially</td>
</tr>
<tr>
<td>Hotel/Golf/Offices</td>
</tr>
<tr>
<td>Reduced Impacts</td>
</tr>
<tr>
<td>Significant Impacts</td>
</tr>
<tr>
<td>Avoided or Substantially Reduced</td>
</tr>
<tr>
<td>Additional Impacts</td>
</tr>
<tr>
<td>Environmentally Superior</td>
</tr>
<tr>
<td>Meets Project Objectives</td>
</tr>
<tr>
<td>City: Yes</td>
</tr>
<tr>
<td>Applicant: Partially</td>
</tr>
<tr>
<td>Alternative Site</td>
</tr>
<tr>
<td>Reduced Impacts</td>
</tr>
<tr>
<td>Significant Impacts</td>
</tr>
<tr>
<td>Avoided or Substantially Reduced</td>
</tr>
<tr>
<td>Additional Impacts</td>
</tr>
<tr>
<td>Environmentally Superior</td>
</tr>
<tr>
<td>Meets Project Objectives</td>
</tr>
<tr>
<td>City: Yes</td>
</tr>
<tr>
<td>Applicant: No</td>
</tr>
<tr>
<td>No Project, Existing Conditions</td>
</tr>
<tr>
<td>Reduced Impacts</td>
</tr>
<tr>
<td>Significant Impacts</td>
</tr>
<tr>
<td>Avoided or Substantially Reduced</td>
</tr>
<tr>
<td>Additional Impacts</td>
</tr>
<tr>
<td>Environmentally Superior</td>
</tr>
<tr>
<td>Meets Project Objectives</td>
</tr>
<tr>
<td>City: Yes</td>
</tr>
<tr>
<td>Applicant: Possibly</td>
</tr>
<tr>
<td>No Project, Full-Intensity Mixed/Regional Commercial</td>
</tr>
<tr>
<td>Reduced Impacts</td>
</tr>
<tr>
<td>Significant Impacts</td>
</tr>
<tr>
<td>Avoided or Substantially Reduced</td>
</tr>
<tr>
<td>Additional Impacts</td>
</tr>
<tr>
<td>Environmentally Superior</td>
</tr>
<tr>
<td>Meets Project Objectives</td>
</tr>
<tr>
<td>City: Yes</td>
</tr>
<tr>
<td>Applicant: Possibly</td>
</tr>
</tbody>
</table>

* Although impacts would be reduced, unavoidable significant air quality, traffic and solid waste impacts would still result, at lower levels than with the proposed project.

Environmentally Superior Alternative

The CEQA Guidelines requires that an EIR identify the environmentally superior alternative among those that are discussed in the document. Of all alternatives evaluated in this section, the “no-project, existing conditions” alternative would be environmentally superior. It would avoid all of the on- and off-site impacts of the proposed project or any of the other development alternatives that were considered. If the no-project, existing conditions alternative is deemed superior, then the environmentally superior alternative among the other scenarios must be identified, if applicable.
Please note that any development proposed at the subject site that is designed to attract consumers from a regional area, would likely be of substantial size and intensity. Given this assumption, it would not be possible to avoid significant traffic, air quality or cumulative solid waste impacts. For example, future traffic volumes on the affected portions of the circulation network are anticipated to be operating at deficient levels of service at several locations without any traffic from this site. Therefore, any new traffic generation from a project that affects those locations would have a significant impact at those locations, unless substantial improvements were made to reduce congestion to acceptable levels. Furthermore, any project on the subject property which generates at least 75 outbound PM peak hour vehicle trips would meet the demands for installation of traffic signals at an entrance from Highway 111 or Adams Street. Given the standards of impact significance recommended by the South Coast Air Quality Management District, any project of substantial size would result in significant construction period and long-term air quality impacts. Unless means are developed to re-use, recycle or properly dispose of all of the solid waste generated by a new project, on-site, there would be a contribution to significant cumulative solid waste impacts due to the current landfill shortage in the Coachella Valley area.

While the reduced density and hotel/conference/golf/offices alternatives would reduce several of the off-site impacts that would occur with the proposed project, after implementation of the recommended mitigation measures for the project or these alternatives, the level of impact significance for each alternative development scenario would be the same, i.e., less than significant. All would have equivalent impacts on-site. None of these three land use scenarios are clearly superior, therefore, with respect to "net environmental impact." Development at the alternative site would result in the same type and magnitude of environmental impacts as the proposed project, on-and off-site, and would not be environmentally superior. The No-Project, Mixed-Regional Commercial alternative would result in off-site environmental impacts of higher magnitude, compared to the proposed project, and may result in more substantial aesthetic impacts.